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Random Effects %nd Model Diagnostics ,_\oﬂ”’ag’
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Last Time: Estimating Random Effegfs W~ ! . et Qi
e Random intercepts model Y;; {( By + u\+ €; Eq~ NOED XY
o Intercept is the expected (population mean) response for average subject
o p, =Yy if balanced or avg of y;
o Fixed effect: ii; = ¥; (but then use pooled standard error)
o Random effect: 4; = w;y; + (1 — w;)¥ (“shrinkage estimator”) where
w; = 72/ (1% + 5%/nj) (aka the “reliability” of group j)
So then what is the standard error of ;7 Can we find a confidence interval around this
estimator? Do we want to? & uesxenavie
Fixed effect:
Confidence interval for Jones: J-xones
model1Sfitted.values[bballSPlayer == "Jones"][1] =.37957 - 0.17730 = 0.2023
new.dat <- data.frame(playerf="Jones") 2023 + t*(37)(.0448/sqrt(11)) =
predict(modell, newdata = new.dat, interval = (.1749, .2296)
'confidence') prrolonec
Confidence interval for Jones’ “effect”:
coefﬁm‘entS:Estima.te std. Error t value Pr(=|t|) _177298 i 2026(01335) = (_204’ _150)
(Intercept) 0.379571 0.007523 50.453 < 2e-16 #*%*
playerfl ~ -0.084571  0.016722 -5.058 1.18e-05 *** A ioneS
playerf2 -0.177298 0.013351 -13.280 1.19e-15 #** 5
playerf3 -0.056237 0.016722 -3.363 0.0018 **
playerfd 0.170429 0.016722 10.192 2.72e-12 #%*
playerfs -0.022753 0.013351 -1.704 0.0967 .
Random effect:
Random effects: ranef(nwodeIZ)
Groups Name Variance Std.Dev. $p1
Player (Intercept) 0.019648 0.14017 ayer
Residual 0.002008 0.04481 (Intercept)
Number of obs: 43, groups: Player, 6 Anderson -0.08244295
Jones -0.17494910
Fixed effects: Mitchell -0.05458408
Estimate Std. Error t value Rodriguez 0.16828693
(Intercept) 0.37885  0.05772 6.564 smith -0.02182608
suarez 0.16551528
- H EAN11 b1 A \
Confidence interval for Jones’ “effect” —~—— _
\ W\ -
Comparative standard error for u; = o o —_—
P ! O\WS .UDzﬂbﬁi—”/)

ranef(modeT2, condvar= TRUE, drop=TRUE) -

SPlayer Jones ) - 174949 + 2.026(.015%) =
-0.08244295 -0.17494910 o\ (-.2022, -.1477)

attr(,"postvar") &

[1] 0.0003290190 0.0001808414
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Partly, you are more interested in the distribution of effects, rather than these individual
players. We have estimated that this distribution is approximately normal with mean 0 and
variance 0.01965.

a) What is the expected average for a player in the 84" percentile?
(a) g y

«\RKO *

So would we even look at these random effects estimates?

(b) What assumptions have we made about these “level 2 eEeits”?
aocmoally  didAcnow

We will add checking these residuals as part of our model diagnostics (Section 10.6).

e Check standardized level 2 residuals for normality though doesn’t always guarantee real
effects follow a normal distribution. Also check for unusual observations.

e Plot against the Level 2 units and other Level 2 variables (e.g., nonlinearity)

e Plot squared residuals against Level 2 variables to check for heteroscedasticity

(c) Try > plot(model2) and >plot(ranef(model2))

Example 2: (Example 4.1 in text): We want to predict language test scores (langPOST) in
Grade 8 students (~ age 11) in elementary schools in the Netherlands based on their (verbal)
Q.
(a) Identify the fixed and random effects in this context. Identify level 1 and leve 0‘2 C\l“\““\

Leder \ 9\%5 \ong Score- \‘::‘

@ gc\Aools +Q -

s 2 SchsolS - (ondomn

(b) Use R to create the null model. How many students and how many schools are in the

dataset? Does this model appear to be valid? l
219D Qv

(c) Using the null model, what do you predict for the language score of a randomly selected
student? —
L\, DD NS, dVYy - \&

(d) What standard error would you put around your estimate? Is this the same as the standard
deviation of all the language scores in the sample? Why or why not?

+ ;\ig.aq,.\— w@.8S = QOB s &.5%
SO )

(e) Is it reasonable to pick out the schools with the largest positive residuals and conclude they
are doing something better than the other schools? LR

\ ocgec .
Cong‘ DV‘\()" l\3 wacpored ?
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(f) Now we want to include pupil (verbal) 1Q as a predictor of language test performance. Is this
a Level 1 or Level 2 predictor?
LQ_\J e\

(g) Write out an appropriate statistical “random intercepts” model. How many parameters?

\/.;;l = _éo -{§,IQC:\ -\;-_‘3 -!;-8.::s

(h) Include the IQ variable in the model and provide an interpretation of the slope and intercept
from the parameter estimates. What would a graph of this model look like? Does this model

appear to be valid? ~ C. v
= 4\ * A TQR S:‘Vﬁ&

Gy =
Lo %
IR

(i) Is the effect of 1Q statistically significant?
4 =4y 22 S© Swall P-v&\ue

() What is a “typical deviation” in these regression lines from the overall regression line? Are
these distances negligible? What is a “low line”? What is a “high line”?
ij?‘ cal Oeiotion = Sxand0rd deyr\ohev)

- 3\28 - /S‘

(k) What is a “typical deviation” of a student from his/her school regression line? More or less
than between the lines? [ 26,2 = &

rore non heroeen btnes

(I) What is the “residual” intraclass correlation coefficient?
—_—

2
3, ‘332 ¢ . B
(I) How do the residual variance and the random intercept variance compare to the empty
model? How do the likelihood and AIC/BIC values compare? Telling you? ot o sthawnt VAC
W £ g7 U 3139 ase weldined Some Senw
o .
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(m) Now that we have “controlled for IQ,” can we pick out the schools with the most positive
random effects and declare them superior?

(o
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Model for hurricane data (HW 3) effect coding for hurricane gender:
Y;j = Bo + B1 X name.gender;; + w; + €
o Intercept: Expected rating for “average hurricane” for average subject
o 21 = average rating for females — average rating for males, adjusted for subject
o With Imer, confint gives you confidence intervals for the fixed and random
components (with Ime, use intervals(), results will vary slightly)

Approach 1: Paired analysis on the means (diff = avg.male — avg.female)
Estimate Std. Error t value Pr(>|t])
(Intercept) @.2257 0.0497  4.541 0.00008773 ***

We are 95% confident that the mean rating is 0.128 to 0.323 higher for male names compared
to female names.

Approach 2: Mixed model with hurricane-name-gender as fixed effect (1 = female, 0 = male)
Fixed effects:
Estimate Std. Error t wvalue
(Intercept) 4.38555 8.04472 98.873
HurrGend -9.22572  0.84255 -5.385  ierGend  -0.3091269 -0.1423182

Approach 3: Ignore subject/treat all observations as independent

Coefficients:

Value Std.Error t-value p-value > confint(gls(Score ~ HurrGend , data = hurr_Tong))

2.5 % 97.5 %
(Intercept) 4.385549 ©.03351924 130.83675 @  (Intercept) 4.3198526 4.4512456
HurrGend -0.225723 ©.04740337 -4.76174 @  HurrGend  -0.3186314 -0.1328136

All these approaches are assuming the hurricane-name-gender effect is the same across the
subjects, but that there is subject-to-subject variation in ratings.

Also see new review problem.
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