
Fall, 2019  Thursday, Sept. 26 

Stat 414 – Day 3 
Parameter Estimation 

 
Last Time 
 Adjusted vs. Unadjusted associations, Transformations vs. Polynomials, Advantages of 

Centering, Interpreting interactions 
 (Day 2b) Can model heterogeneity 

o GLS is a variation of weighted least squares that iterates between estimating 
regression slopes and variance terms 

 
Example 1: Airfares from San Luis Obispo to a “random” sample of 12 major U.S. cities as 
found March 31, 2014 on Travelocity.com for travel on May 8-May 12, 2017. 

631.8 338.6 627.9 352.6 699.8 470.7 557.8 547.6 569.83 321.1 344.7 427.6 
 
(a) Identify the observational units 
 
In the population of American cities,   represents the population mean airfare and   the city-
to-city variation in airfares. 
(b) Suggest an estimator for  .  Why do you think this is a good estimator? 
 Mean or median 
 Know that E() =  
 Also turns out the mean minimizes the sum of the squared errors 
 
Recall: Least Squares estimators minimize the sum of the squared “errors”  ∑ ሺݕ௜ െ ݇ሻଶ௡

௜ୀଵ   
 
(c) How can we find the value of k that minimizes this sum?  
 
 
 
(d) In R, fit the “null model” (intercept only). What is the estimate of the intercept? What is the 
value of SSE = sum of squared errors? How is this related to Residual standard error?  
 
 
 
(e) How do we estimate ? (the “random noise” variance, verify in R, interpret) 
 

 
 Take the derivative and set equal to zero and solve for k, get ybar  
(f) If we know distances to the cities, xi, how can we find the values for  0 and  1 that 
minimize ∑ ሺݕ௜ െ ଴ߚ ൅	ߚଵݔ௜ሻଶ

௡
௜ୀଵ  

 
 
 
 
(g) But what about  2, how do we estimate the “random noise” variance? (Verify in R, 
interpret) 
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Measures of model fit 
 Want MSE = ߪො2 to be small  
 R2 = proportion of variation in y explained by the model, 1 – SSError/SSTotal 
 R2

adj = 1-(MSE/MSTotal) = 1 – SSE/(n – p – 1)/(SST/(n – 1)) = R2 – p/(n – (p + 1))(1 – R2)  
o “MSTotal” estimates the unexplained variability in the response variable 
o MSE measures the unexplained variation in the response after adjusting for model 

 

(h) Inference: Verify F = (drop in SSE)/(difference in df) / MSEfull, = 
ோమ/ଵ

ሺଵିோమሻ/ଵ଴
 , df = 1, 10 

17.7 
 
There are alternatives to least squares estimation.  One method we will see is maximum 
likelihood estimation.  The likelihood is the pdf of a random variable, but viewed as a function 
of the parameter(s). We want to choose parameter values that maximize the likelihood of 
observing the data we have. Again, we are trying to match what we observe with what we 
expect to see. One advantage of MLEs is they work for non-normal distributions. 

 
Suppose our data follow a normal distribution L(  ,  ; y) = 1/ሺߨ2√ߪሻ	݁ିሺ௬ିఓሻ

మ/ଶఙమ	. 

With independent observations, the joint likelihood will be the product 1/ሺߨ2√ߪሻ௡		݁ି∑ሺ௬೔ିఓሻ
మ/ଶఙమ	. 

 
(h) So how do we find the values of   that maximize this function for our observed data?  
What about the linear model? 
 
 
 
 
 
For our simple model (assuming independence, normality) the ML slope and intercept 
estimates will be the same as with LS estimation.  But we will judge models by the value of the 

likelihood function at those parameter estimates, ܮ ൌ 	െ ௡

ଶ
lnሺ2ߨሻ െ ௡

ଶ
ln	ሺௌௌா

௡
ሻ 	െ ௡

ଶ
. 

  
(i) In R, verify the value of the log likelihood for the null model   -75.14 (df = 2) 
-12/2*log(2*pi)-12/2*log(193125/12)-12/2 
 
(j) In R, determine the value of the log likelihood for the linear model. Which is better? 
-69.02 
 
More measures of model fit (aka information criteria) 
Want maximize the log likelihood but can also penalize you for the number of parameters  
Here: p = number of parameters (intercept, slopes,  ) 
 Want (2)(log)likelihood values to be large 
 Want small BIC = -2 x log-likelihood + p x ln(n)   
 Want small AIC = -2 x log-likelihood + 2p   

 
(k) Verify the AIC value in R. 


