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Stat 414 — Day 12
Adding Level 2 Variables (5.2)

Last Time: Random slopes, Centering
e Random slopes model the Var(Yj) and Cov(Ya;, Ys) changing with x
o Correlation between two Ianguage scores depending on their |IQ scores

4
1 1. 00000000 0. 02032115453 0.021246347 0.020926076
2 0.02032115 1.00000000000 0.023672383 0.022742407
3 0.02124635 0.02367238268 1.000000000 0.029270757

e Grand mean centering (y;; — ¥) vs. Group mean centering (y;; — ¥;)
o Not equivalent (e.g., can change fitted values)
o Probably good idea to grand mean center all explanatory variables, especially with
random coefficient models
o Variance components now = expected variation for “average subject”
e The “group mean” (e.g., average IQ in the school) can be a very important “contextual”
variable to include

Example 1: Continue Example 3 from Day 11
We now have a model that includes random intercepts ( average IQ varies among schools),

random slopes (“effect” of 1Q varles amon s'ac')ols ), 1Q, meaP ‘eJ)Ialned some of the
variation in interceptd. ﬂ"ﬂ ‘%. B R R e "R stwehvvacn R

(a) What are the implications/interpretation of adding the interaction between 1Q and mean IQ
to the model? How do we interpret the mteractlon for these centered varlables'? 6,10 ¢ Cﬁ
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(b) Can you create a model that adds SES, mean SES, and all six interactions to the model?
What might you first suggest to simplify the model? How do you do that in R?
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2
Model diagnostics
The assumptions we make in a multilevel model include:
e Linearity of the response with the explanatory variables
e Normality of the level 1 errors with constant variance (homogeneity)
e Normality of the (adjusted) level 2 random effects with constant variance (multivariate
normal with constant covariance matrix)
e Independence of errors across levels \{ ee - X rs -27
To check these conditions we can look at "
o Level 1 conditional residuals vs. Level 1 “conditional” fitted values for equal variance
o Conditional residuals are distances from observation to prediction for its group
o These are what R returns with residuals(model)
o Can also plot vs. other variables, use smoothers
e Normal probability plots/histograms of Level 1 residuals @l QS ?,'\-’4:‘
e Distributions of Level 2 random effects to check for unusual observations
o Check for normality but doesn’t always guarantee real effects follow normal
distribution, check for outliers
o This is what R returns with ranef(model) - =
o Useful to plot vs. Level 2 units, other variables \{' *p a Z ’r
o Random effect residuals = response — fixed effects — conditional residuals
e Distribution of marginal residuals to check for unusual observations \, - .Lp
o Marginal residuals are distances from observation to overall prediction
In R: response - model.matrix(model) %*% fixef(model
Accounts for (confounds) both random effects and random error
Can be informative to plot these across the groups (probably differ)
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Example 2: Have a hypothetical dataset with 10 subjects with 4 temporal-based observations

(one every year). Each person has data for age, sex, average number of cigarettes smoked

each week, level of nicotine dependence from the Fagerstrom Test of Nicotine Dependence

(FTND), ratings of depressive symptoms from the Beck Depression Inventory (BDI), and a

count variable for the total number of lifetime major depressive episodes suffered up to that

point of data collection.

(a) Fit a model predicting cigarette use based on time and self-reported depression (BDI),

including their interaction, and FTND score, with random intercepts for subjects (subjectiD)

and separate random slopes for FTND (uncorrelated with the mtercepts) <OV

R tip: Use (1 | subjectID) + (0 + x | subjectID) \l = “T\n2 o AT + Tume

(b) Based on your model predict the first subject’s Cig usage at time = 1.
- .58 + UL l) «.R (N4 ~2nlh1) | (o4 FTND D)

¥ el } L. 3\
(c) Determine the first subj om FTD slope effect. Now what do you predict?

ranef(model)[1]

L.3\Q% « O «+ O 3DLe (L) - G 539
(d) Compute the marginal and conditional residuals for this subject.

10-(.,.3'45 mocgnal =3 (R
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(e) Plot the conditional residuals vs. the predicted values. Look for equal variance across the
fitted values, outliers. Also check for normality.
plot(residuals(model) ~ fitted.values(model)); ggnorm(residuals(model))

(f) A fancier check of the equal variance assumption that can also point to remedies is to plot
the squared residuals vs. explanatory variables (again use smoothers) and to run an ANOVA
on the squared residuals vs. subjectID (ala Levene’s Test).

anova(lm(squaredresids~as.factor(subjectID))) Y,
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(g) Examine a graph of the marginal residuals vs. the marginal fitted values

fits = model.matrix(model) %*% fixef(model)

margresids = Cigs -fits; plot(margresids™ fits)
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(h) Look at graphs of the random slopes. Do they seem normally distributed?

R: ggnorm(ranef(model)[[1]]SFTND) \ﬁ“fw B S\QPS Q.O.(.\\
oo % O% ( \wneor 32 P\‘*—B

Example 3: Have data on 38 schools in London. The response is an end-of-year test and
possible explanatory variables include gender, verbal reasoning level (high, medium, low) and
the LRT (London Reading Test), school gender (all boy, all girl, mixed), and school
denomination (ther, CofE, RomCath, State). school-frame.txt

(a) Fit a model with random intercepts and random slopes for LRT.

(b) Look at plots of the conditional residuals across school.
ggplot(data=londondata, aes(x=index, y = residuals(model))) +geom_point(pch=1,color="Blue") +
facet_wrap(~school) + geom_hline(yintercept=0)

(c) For this model, the random effects residuals depend on both the random intercepts and the
random slopes. Compute these residuals and examine the graph vs. subject and then by
index for each school school.

R: raneffresids = Test - model.matrix(model) %*% fixef(model) - residuals(model)
ggplot(data=london,aes(x=index,y= raneffresids)) + facet_wrap( ~ school, as.table=F)

+ geom_point(pch=1,color="Blue") + geom_hline(yintercept=0)
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Random Intercept and Slope Model Assumptions

The fundamental assumptions of the RIS model are:
@ Relationship between X and Y is linear
© x; and y; are observed random variables (known constants)

. - |
© v ~ N(0,02) and vj; ~ N(0, ¢2) are unobserved random variable

= 2
Q (Vio.vi) *N(0,X)wherex = ( 70 9
Op1 Oy

» ‘ |
@ e, ~ N(0.02) is an unobserved random variable
@ (vio. vi1) and e;; are independent of one another
@ by and by are unknown constants

Q (yjlxj) ~ N(bp + b1 ;. cri] where r:‘.l‘%;j = 0p + 2001 Xj + 03 X; + 0%

Note: vj allows each subject to have unique regression intercept, and

Vi1 allows each subject to have unique regression slope.
http://users.stat.umn.edu/~helwig/notes/Imer-Notes.pdf




