Stat 414 - Day 10

Random Slopes (5.1)

Last Time:

- Multilevel models find the "right" standard errors
- Adjusting the standard error with design effect: . $5038 \times \sqrt{152 / 54.9} \approx .838$
- Fitting a multilevel model

Fixed effects:			
	Estimate	Std. Error t	value
(Intercept)	5.209	0.590	8.82
group	1.485	0.842	1.76

- When add variables, can compute percentage reduction in total variance or at each level
- Changing the variance components changes the "conditional" ICC, design effect
- Three-level models
- Allowed intercepts (think \bar{y} 's) to vary across schools and across classes within schools
- Can test significance of variance component but probably best to match data structure
- Usual methods for adding predictors, interactions
- Adding Level 1 predictors may explain variation at each level (increase?)

Example 1: Recall the RIKZ dataset, where 5 measurements were taken on each of 9 beaches. The response variable was species richness (different number of species), and available variables were NAP, the height of the sampling station relative to the mean tidal level, and Exposure (a composite measure of wave action, length of the surf zone, slope, grain size, and the depth of the anaerobic layer). (Zuur et al.)
(a) Does there appear to be a relationship between species richness and NAP? Statistically significant? In the expected direction?
negate ct Ct= 4.5)
(b) Does there appear to be differences in species richness across the beaches?

headrest beach 1 \& 2

(c) Fit the null model that allows for the intercepts to vary by beach. Which beach has the largest intercept? Which has the smallest? What is the AIC for this model?

highest beach 102
 Smallest beach 4,7
 AtC ald

(d) Is the (conditional) association between NAP and richness statistically significant?

(e) But perhaps the slopes also vary by beach. Is there evidence of this? Describe the nature of this interaction.

$S D($ intercepts $)=4.2 \quad S D($ slopes $)=2.6$
Borrowing information, poling, shrink age (weight by sample size
or large win SD)
(f) What are downsides to fitting a separate line for each beach?

$$
\begin{aligned}
& \text { Goal is really to find a } \\
& \text { "population line" }
\end{aligned}
$$

SA(intercepts) $=4.2$ or large win $S D$)

Fitting a "random slopes" model
1 me (fixed $=$ Richness \sim NAP, random $=\sim$ NAP | Beach $)$
1mer(Richness ~ NAP + (NAP | Beach))
Note, the intercept is assumed.
(g) Fit the random slopes model and look at the fancy graph. Is this a better fitting model?

How are you deciding?
管:

2.7. Site to site (whim beach) variation
(h) Identify and interpret the fixed effects.

2. 83: Ow g nehress \downarrow by 283 er age beach
(i) Identify and interpret the variance components. Which is larger? What does this tell you?
points closer to lines in graph
Smaller resaduals
(j) Identify and interpret the new correlation parameter estimate.

$$
\tilde{r}_{08} \approx-.99
$$

e.g., Beaches with larger intercepts tends to have \qquad slopes
(k) How many parameters have you added to the model by including the random slope?

$$
\tau_{1} \& \Sigma_{01} \text { (Q) }
$$

$$
\begin{aligned}
& \text { (I) Write out the level-by-level model equations and the composite model equation. } \\
& \text { Lan 1. } \gamma_{1 j}=\beta_{j}+\beta_{j} \text { NAP }+\epsilon_{i j} \\
& \text { Laver 2: } \begin{array}{ll}
\beta_{0 j}=\beta_{0}+u_{0} & u_{0} \sim N\left(0_{1} \tau_{0}^{2}\right) \\
\beta_{j} j=\beta_{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \$ \text { EOs }
\end{aligned}
$$

(m) What is $V\left(Y_{i j}\right)$?
$V\left(Y_{1, j}\right)=\operatorname{Var}\left(u_{0} N A P+u_{0 j}\right)+\operatorname{Var}\left(e_{i j}\right)$
$\operatorname{Cou}\left(E_{i j}, u_{i} k=0\right.$

$$
\begin{aligned}
& V\left(Y_{i j}\right) ? \operatorname{Var}\left(u_{j} N A P+u_{0 j}\right)+\operatorname{Var}\left(E_{i j}\right) \\
& =\operatorname{NAP}^{2} \operatorname{Var}\left(u_{1 j}\right)+\operatorname{Var}\left(u_{j j}\right)+2 \operatorname{NAP} \operatorname{Cov}\left(u_{i j}, u_{0 j}\right)+\cdots \\
& =\operatorname{NAP}^{2} \tau_{1}^{2}+\tau_{0}^{2}+2 \operatorname{NAP} \tau_{01}+\sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =N A P \operatorname{Var}\left(u_{1}\right)+\operatorname{Var}\left(\operatorname{NA}^{2}\right) \tau_{1}^{2}+\tau_{0}^{2}+2 N A P \tau_{01}+\sigma^{2} \\
& =\operatorname{NAP}^{2}
\end{aligned}
$$

(n) Now consider adding Exposure to the model. Is this a Level 1 or Level 2 variable? What do you expect to change in the model?

$$
\begin{aligned}
& \text { change in the model? } \\
& \text { Level } 2 \text {, might explain beach-too-beach } \\
& \text { slopes) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { el } 2 \text { might explain slopes) } \\
& \text { variation intercepts e slope }
\end{aligned}
$$

(o) Write out the level-by-level model equations.

Level 1: $Y_{i j}=\beta_{j}+\beta_{i j} \sim A P+\varepsilon_{i j}$
Lever 2: $\quad \begin{aligned} \beta_{0 j} & =\beta_{00}+\beta_{01} E \times P+U_{0 j} \\ \beta_{1 j} & =\beta_{10}+\beta_{11} E x p+U_{i j}\end{aligned}$

(p) Summarize what you learn from the R exploration.

$$
\begin{aligned}
& \text { as what you learn from the R exploration. } \\
& \text { slope closer to zero } \\
& \text { flap er the } \\
& \text { flatter relationship between NAP } \\
& \text { \& richness }
\end{aligned}
$$

(q) Fit the new model including Exposure and compare it to the model without Exposure (switching to ML because now focused only on fixed effects, also using the "control" option to deal with convergence issues). What is the main impact from adding this variable?

$\frac{S D S}{2.32}$ int

explained vanateon in
intercepts beach to beach
1.64 slopes
$2.6 \hat{\sigma}$

Note: Better statistical practice is probably is start with all potential fixed effects (including interactions), and decide on the random effects (e.g., slopes and/or intercepts). Then use that model to pare down the fixed effects.
(r) Compare and contrast model 2 and model 4 (interpretations of the models)

Note: In random slopes model, be careful with the interpretation of the intercept variance the intercept-by-slope covariance, they assume $x=0$.

Example 2: Reconsider achieve.txt which contained reading (gevocab) scores for students in different schools (school).
(a) Fit a two-level model with random slopes for gevocab. Identify and interpret the "fixed" part of the fitted model.

$$
\text { garêed }=2.01 \text { t. } 52 \text { geuocab }
$$

(b) Is the variation between slopes large? (How far apart might the largest and smallest slopes in the population plausibly be?)

95\% of slopes should be whin

$$
.52-2(1386) \quad 52+2(1386)
$$

. 24
.80
(c) What is the largest source of variation in these students' reading scores?
student
student
variation within schools
(d) Interpret the correlation between the slopes and intercepts.
schools wi big slopes tend to have small positive intercepts (corr -.86)
(e) Can we add age to the model? With random slopes? Is age significantly related to reading scores? How so? How does the random variation of coefficients for this variable relate to that of gevocab? What do you conclude?
yes, though watch convergence issues
p-value $=.02$ so moderate significance, wi negative coefficient, but maybe ok to treat as fixed Core (age slopes, gevocab slopes) $=-.66$
(f) How would you interpret the following models?

1 me (geread \sim gevocab+gender $+(1 \mid$ school $)+$ (gender|class), data=achieve)
1 mere (geread~gevocab+gender + ($-1+$ gender \mid school $)+(1 \mid$ class), data $=a c h i e v e)$
7 mar (geread gevocab+gender + (1|corp) + (1|school) + (gender|class), data= achieve)
(1) random intercepts for school, class variation in slopes for gender a intercepts
(2) random inter cepis for class, random slopes for gender across schools
(3) random intercepts for school, class, corp (district) \& random slopes for gender by class

