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HOLDITCH-DAVIS, D., L. J. EDWARDS AND R. W. HELMS.Modeling development of sleep–wake behaviors: I. Using the mixed
general linear model.PHYSIOL BEHAV 63(3) 311–318, 1998.—The purpose of this paper is to demonstrate the use of the mixed
general linear model (MixMod) for modeling development of sleep–wake behaviors in preterm infants. The mixed general linear model
allows the concurrent identification of both group and individual developmental patterns in longitudinal data sets with inconsistently
timed data, irregularly timed data, and randomly missing values. This statistical technique is well suited to data from preterm infants
because these infants enter and leave longitudinal studies at varying times depending on their health status. One sleep organizational
variable—the regularity of respiration in quiet sleep—obtained from a study of 37 preterm infants was used as an example. Seven
infant characteristics were used as covariates. The various steps involved in conducting a mixed model analysis of this variable are
illustrated. The strengths and limitations of this technique are discussed. © 1998 Elsevier Science Inc.
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THE development of sleeping and waking during early infancy,
and particularly in preterm infants, has long been of interest to
researchers and clinicians. As a result, a number of studies have
been conducted that examined the sleeping and waking of prema-
ture infants before term (6–8,12,13,20,26–30,36). However, none
of these studies was able to use a true longitudinal design. Preterm
infants are born at different gestational ages, become healthy
enough to study at different chronological ages, and become well
enough to go home at different times. Thus, preterm infants enter
and leave studies at different times and spend varying amounts of
time in the study. Preterms are extremely heterogeneous with
respect to demographic and medical factors that might affect state
development. To date, researchers have not been able to appropri-
ately model the developmental trajectories of these infants.

Most researchers have used one of three simple approaches:
studying different infants at each age (6,31), studying the same
infants at only two ages (11), or studying infants repeatedly but
just descriptively comparing means at each age (4,12,25). Al-
though these approaches were the best available at the time the
studies were conducted, none of them provides an adequate esti-
mation of individual developmental trajectories. The cross-sec-

tional approach, by averaging over individuals, may markedly
distort developmental processes (39). Studying only two time
points allows the determination of whether there are differences
between the two ages but not the overall developmental rate or
pattern. By ignoring subjects and descriptively comparing means
at each age, individual differences are overlooked. In this analysis,
each observation on a subject is treated as if it is independent of all
other observations on the subject, resulting in inflated Type I error
rates.

The first statistically appropriate method for estimating indi-
vidual developmental trajectories in preterm infants with differing
numbers of observations was a two-stage linear regression proce-
dure, developed by Kraemer, Korner, and Hurwitz (22), which is
closely related to logistical regression. Transformed data are re-
gressed on postconceptional or chronological age for each infant,
producing an intercept and slope for each infant. The impacts of
gestational age, birthweight, and chronological age on state devel-
opment were determined by correlating these variables with the
intercepts and slopes. This approach has been used in a number of
studies (1,19–21), but it has limitations. Separate regressions are
calculated for each subject so no estimation of the population
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development pattern is obtained. In addition, it is not possible to
incorporate the effects of other variables, such as illness severity,
race, or sex, into the initial regression.

In a previous paper (13), we examined the development of
sleeping and waking during the preterm period using a combina-
tion of the previously described techniques. Multiple regression of
the amount of each state over age and illness severity, ignoring
individuals, was conducted for the group usingp ,0.01 to correct
for the inflated Type I error rate. Slopes from individual develop-
mental trajectories were compared using signed ranked tests. How-
ever, these analyses, though the best we could conduct at the time,
were complex and did not allow us to compare individual trajec-
tories with the pattern of the group.

The purpose of this paper is to demonstrate the usefulness of
the mixed general linear model, a more appropriate statistical
procedure, for modeling development of sleep–wake behaviors
during the preterm period by reanalyzing the quiet sleep respira-
tion regularity score variable, a measure of the organization of
quiet sleep. Although the mixed general linear model has been
known to biostatisticians for over 10 years and has been used in a
few studies of clinical populations (14,16,18,32,37), it has not been
previously used in studies of preterm infant behavior. The mixed
general linear model allows the concurrent identification of both
group and individual developmental patterns in longitudinal data
sets with covariates that vary over time, inconsistently timed data
(assessment schedules vary from subject to subject), irregularly
timed data (varying time intervals between assessments), and
randomly missing values. Since the mixed model has not been
previously used in studies of preterm behavior, full-scale assess-
ment of the development of sleep and waking that includes time-
dependent covariates has not been accomplished. Despite the ad-
vantages of the mixed model, this model has not been widely used
for longitudinal analyses of the physiological or behavioral devel-
opment of any clinical population probably because most research-
ers are unfamiliar with it and because most investigators using
it have utilized the mixed model only for group analyses and
have ignored its ability to identify individual developmental pat-
terns (40).

METHODS

Subjects

Subjects used in this example were 31 preterm infants who
either weighed less than 1500 g at birth or required mechanical
ventilation; 27 had both of these problems. They were part of a
sample of 37 infants that has been previously described in detail
(13). Due to technical problems with the recordings used to obtain
the variable for this report, data were not obtained on six infants.

Procedures

Infant behaviors, including sleep–wake states and respiratory
patterns, were observed once a week from approximately 1900 to
2300 hours. These observations began as soon as the infant’s
medical condition was no longer critical and consent was obtained
from the parents. Infants left the study on transfer to a community
hospital, discharge home, or reaching term age. Thus, the ages at
which subjects entered the study and the length of time they were
studied varied. A total of 116 observations were conducted on the
31 subjects between 29 and 39 weeks postconceptional age (P-C
Age). The number of observations for each subject ranged from 1
to 9 with a mean of 3.6.

During the observations, the occurrences of infant behaviors
were recorded every 10 s (13). The infant’s respiration was re-

corded on a Gulton chart recorder with a piezoelectric sensor pad
whenever the infant was asleep, so that the regularity of respiration
could be identified.

Variables Used for Data Analysis

Quiet sleep respiration regularity score.The respiration tape
was scored visually for three levels of respiration regularity during
quiet sleep—very regular, regular, and irregular (16,33). Reliabil-
ity was determined by rescoring five respiration tapes more than 6
months after they were originally scored. The percentage of exact
agreements ranged from 80.4% to 93.6% for these variables,
averaging 88.5% overall. A measure of the overall regularity of
respiration, and thus the organization of quiet sleep, was calculated
by summing two times the percent of very regular respiration plus
the percent of regular respiration minus the percent of irregular
respiration. This quiet sleep respiration regularity score had a
possible range of2100 to1200.

Infant characteristics.Eight infant characteristics were used to
model the development of sleeping and waking states. Each de-
pendent variable was regressed over postconceptional age. The
other variables were used as covariates.

Five variables—gestational age at birth, birthweight, race, sex,
and days of mechanical ventilation—remained stable within each
subject. The gestational age at birth of each infant was calculated
from the obstetric estimated date of confinement which had been
determined either by the date of the mother’s last menstrual period
or by an ultrasound examination, assuming that this gestational age
agreed within 2 weeks with the results of a simplified version of
the Dubowitz examination (5,9) conducted by a pediatrician on
admission. If the obstetrical dates were unreliable, the gestational
age from the Dubowitz was used. Race, sex, birthweight, and
number of days on mechanical ventilation were determined from
the medical record.

The other three variables—postconceptional age (in weeks),
chronological age (in days), and theophylline treatment—were
assessed at each observation. Whether or not the infant was re-
ceiving theophylline was determined for each observation because
theophylline has been found to alter the sleeping and waking states
of premature infants (34).

Infant characteristics variables were generally measured using
the actual data. Race was scored as either white or minority. (There
was one Native American infant in the minority group, and the rest
were black.) Since the distribution of the number of days of
mechanical ventilation was highly skewed (mean 10.3, median 5),
infants receiving 1 day or less of mechanical ventilation were
scored as receiving 1 day and then the natural logarithm of each
subject’s score was used in analyses.

Statistical Analysis

The analysis in this paper was performed using a technique for
longitudinal data analysis, called mixed general linear models
(MixMod) or random regression models (2,3,10,17,23,35,37). In
the MixMod, the regression of each subject is represented by its
deviation from the group regression. The MixMod has three com-
ponents: the fixed effects component, the random effects compo-
nent, and the random error component. The fixed effects and
random error components are analogous to the corresponding
components of a standard multiple regression. The fixed effects
component represents a population regression line. The random
effects component for each subject is the difference between that
subject’s regression and the population regression and is a measure
of how that subject differs from the population regression. Thus,
each subject has its own random regression line which is defined
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by the sum of the fixed effects component and the subject’s
random effects components. Because each subject has its own
regression line, the MixMod can accommodate mistimed data and
data missing ‘‘completely at random’’ without requiring that miss-
ing data be estimated. (See the Appendix for statistical information
about the mixed model.)

RESULTS

The analysis of quiet sleep respiration regularity score will be
described as an example of the use of the mixed general linear
model. Quiet sleep organization is known to increase over the
preterm period so this variable should serve as an effective exam-
ple (6,7,12,13,20,26,29), and the development of this variable,
unlike most of the other sleep–wake behaviors, is affected by
covariates (15). The mean value of the quiet sleep respiration
regularity score over the 116 observations was 59.7 (SD 38.7,
range244.9 to1145.5, median159.1). Figure 1 presents the raw
data for this variable. Although examination of the weekly means
suggests that this variable undergoes systematic development over
the preterm period, the investigator is almost overwhelmed by the
variability apparent in this figure. Subjects enter and leave the
study at different points in time. As a result, some subjects have as
many as nine observations and others as few as one. There is also
a large amount of intrasubject variation. However, this sort of data
is typical for preterm infants.

It is difficult to identify a statistically appropriate analysis
technique for this sort of data. One could use the approach of
Kraemer, Korner, and Hurwitz (22), but that would involve cal-
culating separate regressions for each subject, and no estimate of
the population pattern would be obtained. In addition, in studies
with significantly more subjects than the 31 in this analysis,
calculating separate regressions for each subject might be imprac-
tical.

The mixed general linear model presents an analytical solution
to the problems inherent in this type of data. A single equation is
used to calculate developmental patterns for both the group and
individuals. Figure 2 illustrates the results of calculating a Mix-
Mod for the quiet sleep regularity score and shows how this
statistic enables the systematic aspects of the data in Fig. 1 to

become apparent. In the rest of the results section, we will sum-
marize the steps involved in calculating the MixMod.

Preliminary Examination of Variables

Normality of the variable.The first step in analyzing data with
the MixMod, like all statistics, is conducting a preliminary exam-
ination of the data. The Shapiro–Wilk test of normality for the
quiet sleep regularity score was nonsignificant (W 5 0.98, p 5
0.43), indicating that this variable was normally distributed. Skew-
ness was20.263, and kurtosis20.105.

Although in this case the dependent variable was normally
distributed, it is unclear how necessary this is. Very little is
known about the extent to which MixMod estimation and hy-
pothesis testing procedures are robust to nonnormality (24).
Standard multiple regression analyses are generally quite robust
to certain types of nonnormality but are sensitive to distribu-
tions with long tails or great skewness. Informal studies suggest
that MixMod estimates of parameters and the distribution of the
test statistic inherit a relative insensitivity to nonnormality from
their standard regression counterparts. Also, unlike standard
multiple regressions, the MixMod is relatively unaffected by
heteroscedasticity (inhomogeneous variances) since the Mix-
Mod explicitly includes both within- and between-subject het-
eroscedasticity.

Covariates.Prior to the analysis, postconceptional age was
‘‘centered’’ at its mean value (34 weeks), averaged over sub-
jects and over time points within subjects. Thus, postconcep-
tional age ranged from25 (29 weeks) to15 (39 weeks). The
eight infant characteristics were intercorrelated. In general,
these relationships were small to moderate with the following
exceptions. Postconceptional age was highly correlated with
chronological age at observation (r 5 0.77) and days of me-
chanical ventilation (r 5 0.65). Chronological age at observa-
tion was highly correlated with days of mechanical ventilation
(r 5 0.83), birthweight (r 5 20.64), and gestational age at birth
(r 5 0.69). Mechanical ventilation was also highly correlated
with gestational age at birth (r 5 0.72). These findings would be
expected in preterm infants since smaller birthweight and lower
gestational age at birth increase the risk of illness and prolonged

FIG. 1. Raw quiet sleep respiration regularity scores for individuals (thin lines) and the group
mean (thick line) at each postconceptional age.
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hospitalization. A decision was made on theoretical grounds
that postconceptional age would be the basic time frame over
which each dependent variable was regressed because postcon-
ceptional age directly reflects biological maturation. The other
infant characteristics were retained in the model only if they
contributed significantly to the regression in addition to the
variance they share with postconceptional age.

Screening Analyses

To achieve a parsimonious model, the main effects were fit first
in a preliminary MixMod regression that required ap , 0.15 for
an infant characteristic to be retained. The intercept and postcon-
ceptional age effects would be retained regardless of their proba-
bility level. As Table 1 indicates, all of the infant characteristics,
except birthweight and mechanical ventilation, were eliminated at
this stage.

In a second step, the screening regression was repeated with the
two remaining infant characteristics, intercept, postconceptional
age, and the interactions between postconceptional age and the
remaining infant characteristics (see Table 1). This time one infant
characteristic—birthweight—and one interaction—mechanical
ventilation 3 postconceptional age—met the 0.15 probability
level. A theoretical decision had been made to retain the main
effect if the interaction reached ap level of 0.15. Thus, intercept,
postconceptional age, and the main effect of mechanical ventila-
tion were also retained in the model. These variables were used in
the final MixMod analyses.

Final Analyses

In a MixMod analysis, the computer uses an iterative process to
fit the best estimates for the fixed effects (the group regression of
intercept, postconceptional age, birthweight, mechanical ventila-
tion, race, and the interaction between postconceptional age and
mechanical ventilation) and for the random components (the de-
viations of each individual’s intercept and postconceptional age
effect from the group regression). We decided on theoretical
grounds to limit the random components to intercept and postcon-
ceptional age. However, additional random effects could be fitted
if a variable that has a value at each age, such as theophylline, was
expected to have differing influences on different individuals.
Thus, our random effects component of the MixMod, or individual
subjects’ deviations, was limited to the deviation of an individual
subject’s intercept from the group intercept and the deviation of an
individual subject’s slope from the slope of the population regres-
sion with regard to postconceptional age.

We again utilized a model reduction procedure in which all

TABLE 1
PREDICTOR VARIABLES IN THE PRELIMINARY SCREENING
REGRESSION ANALYSES FOR QUIET SLEEP RESPIRATION

REGULARITY SCORE

Term Coefficient SE
p

Level

Initial Screening Procedure

Intercept 3.951 53.393 0.941
Postconceptional Age 22.474 8.401 0.770
Mechanical Ventilation 212.895 8.529 0.025
Birthweight 0.050 0.024 0.043
Theophylline 5.454 7.900 0.493
Gestational Age 8.260 8.529 0.337
Chronological Age 1.756 1.211 0.153
Race 26.228 12.056 0.608
Sex 13.319 10.782 0.222

Second Screening Procedure

Intercept 61.996 13.255 0.000
Postconceptional Age 2.368 3.848 0.541
Mechanical Ventilation 22.380 5.224 0.650
Birthweight 0.038 0.019 0.050
P-C Age3 Mechanical Ventilation 2.391 1.555 0.130
P-C Age3 Birthweight 20.000 0.008 0.977

Note: Italicized variables were retained for the subsequent analysis.

FIG. 2. Predicted regression of quiet sleep respiration regularity scores over postconceptional
age for individuals (thin lines) and the group (thick line).
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variables not achievingp 5 0.05 in an initial MixMod, except
intercept and postconceptional age, were removed, and MixMod
was repeated. Two variables were found to contribute significantly
in the group analysis, or fixed effects components, of the final
MixMod analysis. (Since this is a secondary analysis of already
published data, statistical ‘‘significance’’ andp values should be
interpreted as descriptive terms. However, in analysis situations
appropriate for hypothesis testing, they would be interpreted in the
same way asp values of more familiar statistics.)

The intercept at 34 weeks postconceptional age was the first
predicted component. It had a value of 62.571 (SE 4.878,F(1, 58)
5 164.61,p ,0.001). Postconceptional age contributed signifi-
cantly to the regression with a coefficient of 7.09 (SE 1.563,F(1,
58) 5 20.62,p ,0.001), indicating that the organization of quiet
sleep increased over the preterm period. Birthweight also had a
significant effect with a coefficient of 0.046 (SE 0.017,F(1, 58)5
7.41, p ,0.01). Infants with larger birthweights had slightly
greater quiet sleep respiration regularity scores. Thus, the esti-
mated regression for quiet sleep respiration regularity score was

QS Resp. Reg. Score5 62.571 1 @7.085 3 ~P-C Age!#

1 @0.046 3 ~Birthweight!#

where postconceptional age ranges from25 to 15. Figure 3
presents this group regression (or fixed effects component) of quiet
sleep respiration regularity score over postconceptional age with
birthweight set at the mean value of 995 g.

The MixMod also identifies random components, or each sub-
ject’s deviations from the group regression. An individual sub-
ject’s intercept is the sum of the population intercept and the
subject’s random intercept increment. In the MixMod, the regres-
sion line for thekth subject is treated as random. The randomness
comes from the assumption that the intercept and slope increments
for the kth subjects are random variables from a joint normal
distribution with zero means.

For example, Subject 29 had a random intercept coefficient of
28.795 and a random postconceptional age component of20.574.
Thus, the ‘‘predicted’’ regression for this subject who had a
birthweight of 770 g is

QS Resp. Reg. Score5 62.571 2 8.803

1 @~7.085 2 0.573! 3 ~P-C Age!# 1 @0.046 3 770#

Figure 3 shows this subject’s predicted regression as compared to
the group regression and to the subject’s actual data. A subject’s
actual data do not lie precisely on a straight line. Each data value
deviates from the individual’s ‘‘true’’ line by a small amount. This
error is assumed to be random variables from a normal distribution
with mean of 0.

Figure 2 shows the dispersion of all subjects’ predicted regres-
sion lines around the group regression. The variances of the actual
data around the individual intercepts and slopes (postconceptional
age effect) for each variable in the MixMod analyses give a
measure of the amount of dispersion. The standard deviation of the
random intercepts was 19.75 (as compared to a group coefficient of
62.571) (see Fig. 2). The standard deviation of the random slopes
was 4.47 as compared to the estimated population slope of 7.085.
The correlation between the individual random intercepts and
slopes was very low (0.063), indicating there was no systematic
relationship between random slopes and intercepts and that the
individual regression lines for quiet sleep respiration regularity
score generally parallel the group regression line.

DISCUSSION

Our example demonstrated that the MixMod analyses can be
useful for determining the development of sleep-related behaviors,
such as quiet sleep regularity score, over the preterm period. This
statistical technique has the advantage that each subject is repre-
sented in the model so that subjects with differing starting ages and
different lengths of time in the study can be included in the same
analysis without estimating missing values or violating assump-
tions. Using the MixMod, we found that the organization of the
quiet sleep increased over age and that demographic characteristics
and medical complications have relatively small impact on this
developmental change. Thus, the MixMod analyses had similar
findings to that of our earlier multiple regression analysis with the
same data (13), but the MixMod is a statistically appropriate
method for analyzing this type of data.

FIG. 3. Predicted regression of quiet sleep respiration regularity score for the group (thick line)
and for Subject 29 (thin line). Subject 29’s actual data points are indicated by dots.
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Unlike the standard multiple regression, the MixMod analyses
also permitted examination of developmental patterns of individ-
ual infants. The individual developmental patterns generally par-
alleled the group regression lines for organization of sleep states.
There was no significant correlation between individual slopes and
intercepts, but examination of the graphs (Fig. 2) does show a fair
amount of interindividual variation in slopes. Thus, differences
between individual and group developmental patterns in different
states can be explored with the MixMod but not with a standard
multiple regression.

One of the strengths of the MixMod analysis was that we were
able to include seven infant characteristics in the screening regres-
sion, which is more than could be appropriately included in a
standard multiple regression that would need to be limited to only
one observation for each of the 31 subjects in order not to violate
statistical assumptions. With the MixMod, investigators can sta-
tistically identify the effects of other variables on developmental
patterns and determine which of these variables most directly
influences state development. We found that most of the infant
characteristics had either no effect on the development of quiet
sleep organization or such small effects that they did not enter into
the regression.

Another advantage of the MixMod was that it avoided the
biases having repeated measures on the same subjects would
introduce into a standard multiple regression. An analysis using
standard multiple regression requires fitting separate models to
each individual. Serial observations on a single subject are in most
cases correlated. Standard multiple regression techniques assume
that observations are independent, i.e., that there is no correlation
from one observation to the next. Thus, when one uses multiple
regression, one has to ignore the correlations between observa-
tions. This not only violates model assumptions but also leads to
biased estimation. Also, to compare fixed group effects, such as
sex, race, or medical complications, some type of meta-analytic
technique must be used to summarize the results in each group
since the models would have been fit on an individual basis. Such
techniques often are not robust and add further noise to the results.
The mixed model simultaneously fitted group and individual sub-
ject effects. It also easily adjusted for correlated observations
through the inclusion covariances in estimation results.

Standard repeated-measures analyses assume the data are reg-
ularly timed. In addition, missing values on a subject are usually
handled by completely removing the subject from the analyses or
estimating the missing value. If 5% or more of the subjects are
removed or 5% or more of the data estimated, severe bias in
estimation and hypothesis testing is introduced. The mixed model
did not require regularly timed observations, and all nonmissing
values were used in the analysis.

Although there were a number of advantages of the mixed
model, it also had limitations. Assessing model assumptions (dis-
tributional assumptions, linearity, outliers) through ‘‘residual’’
analysis can be very difficult and is the subject of ongoing theo-
retical and practical research. Second, finding easy to use software
for the proper implementation of the mixed model can be difficult
for investigators. Although SAS Proc Mixed is available and
relatively easy to use, the software presently has convergence
problems even under simple modeling scenarios. Hence, special-
ized software must be used to address nonconvergence problems.
Also, residual analysis techniques for the MixMod can only be
implemented using specialized software. The analysis in this paper
overcame these limitations by using specialized software.

In conclusion, the findings of this study demonstrate the po-
tential usefulness of the MixMod technique for determination of
developmental patterns in preterm infants. This statistical tech-

nique is able to deal with the problems of subjects entering and
leaving the study at different times, an inevitable characteristic of
a longitudinal study with preterm infants. Moreover, it permits the
concurrent determination of individual developmental patterns and
comparison of the individuals’ regressions with the group. It also
can be used to examine a wide variety of demographic factors and
medical complications so that specific hypotheses about matura-
tional and environmental effects on development of states can be
tested. The MixMod technique deserves a wider utilization in
studies of preterm infants and should also be strongly considered
for use with any population, including clinical populations who are
medically ill, neurologically impaired, or elderly, in which an
irregular pattern of data collection or loss of subjects due to death
or physical incapacity is to be expected by the nature of the
population under study.

APPENDIX

It may be useful to discuss the formulation of the mixed general
linear model in more detail. In general, the mixed model equation
for a random regression model with continuous outcome measure,
i.e., continuous dependent variable, is typically expressed for an
individual as

Yk 5 X kb 1 Z kdk 1 ek

whereYk is thenk 3 1 vector of observations from thekth subject,
Xk is the nk 3 q matrix of ‘‘fixed effect’’ regressor values
(including a column of 1s for the interceptor) for thekth subject,
b is the q 3 1 vector of population regression coefficients, or
‘‘fixed effect’’ coefficients,Zk is thenk 3 p matrix of ‘‘random
effect’’ regressor values (including a column of 1s for the intercept
term) for thekth subject, anddk is thep 3 1 vector of ‘‘random
effect’’ parameters for thekth subject.ek is the nk 3 1 vector of
‘‘random error’’ terms for thekth subject. Note thatb has no
subscript; as in a multiple regression, oneb vector serves for all
subjects.

In the same fashion as the usual multiple regression model,
there are distributional assumptions for the random terms and
techniques for estimating model parameters. Details regarding
distributional assumptions and parameter estimation in the mixed
model are given in the literature (2,3,10,17,23,35,37,38). An esti-
mation equation forb is

b̂ 5 (X 9Ŝ21X )21X 9Ŝ21Y

whereŜ 5 V̂(Y) an estimate of the variance of the vector of all
observations from subjects produced by vertically concatenating
theYk. This equation shows that one must knowŜ to computeb.
Because of the complicated method involved in doing the estima-
tion, iterative methods are required to compute simultaneous esti-
mates of all parameters.

The vectorb is the primary (fixed effect) parameter. Much of
the work of statistical analysis is performed via secondary (fixed
effect) parameters of the formU 5 Cb 2 U0, whereC andU0 are
a known, fixeda 3 q anda 3 1 vector, respectively. For an a priori
secondary parameterU, an approximateF statistic forH0: U 5 0
vs Ha: U Þ 0 is

F 5 Û9[C(X 9Ŝ21X )C9]21Û/a

The specific equation for the MixMod with multiple regressors,
such as is the case in this study, is

yki 5 @b0 1 b1~x1ki 2 x10! 1 b2~x2ki 2 x20!

1 ... 1 bq~xqki 2 xq0!# 1 @d0k 1 d1k~z1ki 2 z10!

1 d2k~z2ki 2 z20! 1 ... 1 dpk~zpki 2 zp0!# 1 eki
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In this equation,b0 is the intercept andb1 to bq, the slopes for the
various predictor variables and covariates (postconceptional age,
birthweight, mechanical ventilation, race, and the interaction be-
tween postconceptional age and mechanical ventilation).

An individual subject’s intercept is the sum of the population
intercept and the subject’s random intercept increment. To achieve
this, in the overall equation, we let the variableZ be the same as
the first two columns inX (corresponding to intercept and slope),
so thatzki 5 xki and z0 5 x0. These terms can be rearranged to
produce an equation for the regression line for thekth subject in
which b0 1 d0k is the intercept,b1 1 d1k is the slope (postcon-

ceptional age effect),b2 is the birthweight effect, andeki is the
deviation about the line:

yki 5 @b0 1 b1~xki 2 x0!# 1 @d0k 1 d1k~zki 2 z0!# 1 eki

Notice that d0k is an intercept increment andd1k is the slope
increment. The regression for thekth subject is calculated by
addingd0k to the intercept of the population regression line (b0)
and d1k to the slope of population regression line (b1). In the
MixMod, the regression line for thekth subject is treated as
random.
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