STAT 301 - OVERVIEW OF STATISTICAL PROCEDURES

Selecting the inferential procedure: You should start with 3 questions

1. Does the research question need a confidence interval or a test of significance?

2. Is the question dealing with a mean (quantitative response) or a proportion (categorical response)?

3. How many (independent) populations do I have: Am I comparing two groups or analyzing one group?

One sample	Quantitative (Ch. 2)	Categorical (Ch. 1)	
Graphical summary	Histogram, boxplot, dotplot	Bar graph	
Numerical summary	$n, \bar{x}, s, median, IQR$	\hat{p} , n	
Null hypothesis	H ₀ : $\mu = \mu_0$	H ₀ : $\pi = \pi_0$	
	$\mu_0 =$ hypothesized mean	π_0 = hypothesized population	
	(or population median)	proportion or process probability	
Simulation	• <i>RS</i> : Sample from hypothetical	• <i>RS:</i> Spinner (with probability π_0)	
	population or bootstrapping	for each observational unit (large	
	• <i>MP</i> : Flip coin for each pair to	population or process)	
	determine sign of difference	• <i>MP</i> : Flip coin to change order	
Simulation applet	• Sampling from Finite Pop	One Proportion Inference	
	Matched Pairs Randomization		
Exact probability model		Binomial	
		MP: McNemar's Test	
Theory-based approach	One sample <i>t</i> procedure	One sample <i>z</i> procedure	
X7 1' 1' 1 1		Wald adjustment for 95% CI	
Validity check	Normal population or $n \ge 30$	Wald c1: $n p \ge 10, n(1-p) \ge 10$	
		tos: $n \pi_0$ and $n(1 - \pi_0) \ge 10$	
		Adjusted Wald: $n \ge 5$	
Test Statistic	$t = \frac{\overline{x} - \mu_0}{\overline{x}} \qquad \text{df} = n - 1$	$z = \frac{\hat{p} - \pi_0}{\overline{\qquad}}$	
	s/\sqrt{n}	$\int \sqrt{\pi_0(1-\pi_0)/n}$	
Confidence interval	for μ : $\overline{x} \pm (t_{n-1}^*)(s/\sqrt{n})$	for π : $\hat{p} \pm z^* \sqrt{\hat{p}(1-\hat{p})/n}$	
		Adjusted: $\tilde{p} \pm 1.96\sqrt{\tilde{p}(1-\tilde{p})/(n+4)}$	
JMP	• Journal File	• Journal file (Hypothesis Test One	
	 Analyze > Distribution (Test 	Proportion, Confidence Interval	
	Mean, Confidence Interval)	One Proportion)	
	 Analyze > Matched Pairs 	 Analyze > Distribution* 	
R	 t.test(paired = TRUE) 	 iscambinomtest 	
		 iscamonepropztest 	
Applet	• TBI > One Mean	One Proportion Inference applet	
		• TBI > One Proportion	
Prediction interval	$\overline{x} \pm (t_{n-1}^*) s \sqrt{1+1/n}$		
	With normal population (t^* from t		
	distribution in applet)		
	JMP: (Prediction Interval)		

*With one categorical variable, Analyze > Distribution assumes a binomial p-value for one-sided and actually the theory-based p-value for two-sided.

Two independent samples	Comparing Two Means (Ch. 4)	Comparing Two Proportions (Ch.				
or Randomized expt		3)				
Descriptive Statistics						
Graphical summary	As above but on same scale	Segmented bar graph for each group (all bars 0-100%)				
Numerical summary	$\bar{x}_1, \bar{x}_2, s_1, s_2, n_1, n_2$	$\hat{p}_1 - \hat{p}_2$ or \hat{p}_1/\hat{p}_2 (rel risk), $\hat{\tau}$ (odds				
	ratio)					
Inferential Statistics						
Null hypothesis	$H_0: \mu_1 - \mu_2 = 0$	H ₀ : $\pi_1 - \pi_2 = 0$ or $\pi_1 / \pi_2 = 1$				
Simulation	<i>RA</i> : Index cards with response	<i>RA</i> : Index cards color-coded for				
	values	success and failures				
	<i>RS:</i> bootstrapping	<i>RS:</i> Independent binomial sampling				
		with same probability of success				
Simulation applet	Comparing Groups (Quant)	Analyzing Two-way Tables				
Exact probability model	All possible random assignments (Inv 4.1)	Fisher's Exact Test (hypergeometric)				
Theory-based approach	Two sample <i>t</i> procedure	Two sample <i>z</i> procedure				
		Wilson adjustment for 95% CI				
Sample size check	normal populations or $n_1, n_2 \ge 20$	At least 5 successes and 5 failures in				
1		each sample				
Test Statistic	$\overline{x}_1 - \overline{x}_2 - hvpoth diff$	$\hat{p}_1 - \hat{p}_2$				
	$t = \frac{1}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{3}{\sqrt{2}}$	$z = \frac{1}{\sqrt{\hat{p}(1-\hat{p})(1/n_{c}+1/n_{c})}}$				
	$\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$	$\hat{p} = (\text{total } \# \text{ of successes})/(n_1+n_2)$				
	(unpooled)					
	(unpooled)					
Confidence Interval	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$					
Confidence interval	$\overline{x}_1 - \overline{x}_2 \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\hat{p}_1 - \hat{p}_2 \pm z * \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$				
	approx df=min($n_1 - 1, n_2 - 1$)					
		$\exp[\ln(p_1/p_2) \pm z^* \sqrt{a} - \frac{a+c}{a+c} + \frac{b}{b+d}]$				
JMP	Analyze > Fit Y by X (Test Mean,	Analyze > Fit Y by X (Test Mean,				
	Confidence Interval)	Confidence Interval)				
	Journal File (Two Means)	Journal File (Two proportions)				
R	t.test(var.equal=FALSE)	fisher.test (two-wav table. nrow=2)				
	iscamtwosamplet	iscamtwopropztest				
TBI Applet	Two means	Two Proportions				

Note: With skewed quantitative data, can also consider transformations or randomization tests involving other statistics like medians.

RS = random sampling

RA = random assignment

MP = matched pairs

Bootstrapping is resampling with replacement from the observed data. This can be done in practice, with or without assuming the null is true (vs. our explorations where we made up populations to sample from to learn the behavior of the statistic).

Statistical Investigation Process

- 1. Formulate research question
- 2. Design data collection strategies
- 3. Collect and clean data
- 4. Exploratory data analysis
- 5. Statistical inference (see table for common inference procedures)

Significance Estimation Generalizability? Cause-and-effect?

6. Reformulate research question

Methods of Analyses

	Response Variable (Variable of Interest)			
Explanatory	1 Quantitative	1 Categorical	1 Categorical	
Variables	(Normal errors)	(Binary)	(3+ Categories)	
None	One sample t (301)	One sample z (301)	Chi-square goodness	
	Paired t (301)	Chi-square goodness of fit (302)	of fit (302)	
1 Quantitative	Simple linear regression (302, 324)	Logistic Regression (324, 418)	Nominal logistic regression (418)	
1 Categorical (Binary, 2 Groups)	Two sample t (301) One-way ANOVA (302)	Two sample z, Fisher's Exact Test (301) <i>Chi-square test</i> (302)	Chi-square test (302)	
1 Categorical (3+ Categories/Groups)	<i>One-way ANOVA</i> (302, 323)	<i>Chi-square test</i> (302)	<i>Chi-square test</i> (302)	
2+ Quantitative	Multiple regression (302, 324)	Logistic Regression (324)	Nominal logistic regression (418)	
2+ Categorical	Multi-way ANOVA (302, 323)	Logistic Regression (324)	Nominal logistic regression (418)	
Both Categorical and Quantitative variables	Multiple regression/ ANCOVA (302, 323)	Logistic Regression (324)	Nominal logistic regression (418)	

NOTE:

- This is <u>not</u> an exhaustive list of methods; these are some of the methods you should have seen so far.
- There are some exceptions, but this provides some organization to the choice of method

Future Courses:

Correlated observations (Dependent observations) - Stat 414

Correlated observations (Time Series data) - Stat 416

Time-to-event response/censored data (Survival analysis) - Stat 417

General Linear Model (Categorical data) – Stat 418

More than two quantitative response variables (Multivariate analysis) - Stat 419