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ABSTRACT: 
We describe our project to develop of curricular materials for a course that introduces students at 
the post-calculus level to statistical concepts, methods, and theory. This course provides a more 
balanced introduction to the discipline of statistics than the standard sequence in probability and 
mathematical statistics. The materials incorporate many features of successful statistics education 
projects that target less mathematically prepared students.  The student audiences targeted by this 
project are particularly important because they have been overlooked by previous curricular 
reform projects. Most importantly, the proposed audience includes prospective teachers of 
statistics, introducing them to content and pedagogy that prepare them for implementing NCTM 
Standards with regard to statistics and probability and for teaching the Advanced Placement 
course in Statistics. 
 
BACKGROUND 

The past decade has seen the development of a reform movement in statistics education, 
emphasizing features such as statistical thinking, active learning, conceptual understanding, 
genuine data, use of technology, collaborative learning, and communication skills.  [See, for 
example, Cobb (1992), Cobb (1994), and Moore (1997) for overviews of this reform movement.]  
A wide variety of materials have been developed to support this type of instruction [see Moore 
(2000) for descriptions of such teaching resources]:  
• Textbooks with more emphasis on statistical thinking, conceptual understanding, and genuine 

data are now widely available. 
• Activity books and lab manuals provide investigations to foster students’ active learning. 
• Depositories of genuine datasets have been compiled in books and on the web. 
• JAVA applets and new software allow for more interactive, visual explorations of statistical 

concepts. 
• Assessment tools, such as projects, focusing more on students’ conceptual understanding and 

ability to think statistically. 
As these materials become more readily available, noticeable changes are occurring in 

introductory courses, especially in the areas of teaching methods, course content, and use of 
technology [see, for example, Garfield (2000)]. 
 
THE PROBLEM 

The vast majority of these educational reform efforts have been directed at what we will 
call “Stat 101,” an introductory, algebra-based, service course for non-majors.  Relatively little 
attention has been paid to introductory statistics courses for mathematically inclined students 
majoring in fields such as mathematics, economics, the sciences, engineering, and even statistics.   

Mathematics majors and other students with strong mathematical backgrounds typically 
choose between two options for introductory study in statistics: 1) take the Stat 101 course, or 2) 
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take a standard two-semester sequence in probability and mathematical statistics.  The first option 
is far from ideal, because the Stat 101 course is aimed at a different student audience and is not at 
a challenging mathematical level. Due to its lack of substantial mathematical content, this course 
often does no count towards the student’s major, providing a strong disincentive from taking the 
course.  Unfortunately, the second and more common option is also fraught with problems.  

Concerns about the nature of this sequence are not new.  For example, the 1980 report of 
the MAA’s Committee on the Undergraduate Program in Mathematics (CUPM) stated: “The 
traditional undergraduate course in statistical theory has little contact with statistics as it is 
practiced and is not a suitable introduction to the subject.” This “math stat” sequence often 
presents a full semester of probability before proceeding to statistics, and then the statistics 
covered is often abstract in nature.  As a result, students do not emerge from the sequence with a 
modern and balanced view of the applied as well as the theoretical aspects of the discipline of 
statistics.  In fact, students often leave this course with less intuition and conceptual understanding 
than students who have taken a lower level course (e.g., data collection issues, statistical vs. 
practical significance, association vs. causation, robustness, diagnostics).  An unfortunate 
consequence of this may be that the courses fail to attract some good students who would be 
excited by statistical applications. 

 
IMPORTANCE FOR PROSPECTIVE TEACHERS 

Especially unfortunate is that reform efforts in statistics education have largely failed to 
reach prospective teachers of mathematics and statistics, most of whom experience statistics, if at 
all, through this “math stat” sequence.  In addition to the problems described above, the “math 
stat” sequence also does not typically adopt the pedagogical reform features (e.g., active learning, 
conceptual focus, group work, written reports) that have been demonstrated to enhance student 
learning (Garfield, 1995).  Thus, future teachers emerging from a traditional “math stat” sequence 
generally do not experience a model of data-oriented, activity-based teaching practices that they 
will be expected to adopt in their own teaching.   

In particular, the Curriculum Standards of the National Council of Teachers of 
Mathematics (2000) and the College Board’s description of the Advanced Placement course in 
Statistics (2002) both emphasize the need for teachers who understand the fundamental concepts 
of statistics and can teach the subject using activities focused on data.  Fortunately, awareness is 
growing in the United States that this calls for changes in the mathematical preparation of 
teachers.  A recently released report on this issue from the Conference Board of the Mathematical 
Sciences (2001) recognizes the importance of better training in statistics for prospective teachers 
of mathematics. 

 
PREVIOUS EFFORTS 

There have been some efforts to incorporate more data and applications into the “math 
stat” sequence.  Moore (1992) provides several examples for how he infuses the second semester 
course with more data and concrete applications, and Witmer (1992) offers a supplementary book 
towards these goals. Texts such as Rice (1994) now include more genuine data and applied topics 
such as two-way ANOVA and normal probability plots. More recently, a new text by Terrell 
(1999) aims to present a “unified introduction” to statistics by using statistical motivations for 
probability theory; its first two chapters are devoted to structural models for data and to least 
squares methods, before the introduction of probability models in chapter 3.  Additionally, a new 
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supplement by Nolan and Speed (2000) provides lab activities that integrate real scientific 
applications into statistical investigations in order to motivate the theory presented. 

These changes are directed toward the second course in the two-course sequence, 
presumably leaving the first course to cover probability theory. This approach is especially a 
disservice to students who only take the first course.  These students (e.g., engineering majors, 
mathematics education majors) often just do not have room in their curriculum for a second 
course. Other students, failing to see the relevance to their own discipline, may simply choose not 
to continue to the second course. As a consequence, Berk (1998) advocates that “we should 
maximize the amount of statistics in the first semester.”   

Thus, while there have been efforts, they have not yet achieved widespread integration 
throughout the entire sequence as has been hoped.  As David Moore wrote in support of our grant 
proposal in 1998: “The question of what to do about the standard two-course upperclass sequence 
in probability and statistics for mathematics majors is the most important unresolved issue in 
undergraduate statistics education.”  We propose a rethinking of the entire two-course sequence so 
that the first course also addresses the call of Cobb and Moore (1997) to “design a better one-
semester statistics course for mathematics majors.” 
 
COURSE MATERIALS 

In response to this challenge, we are initially developing curricular materials for an 
introductory course at the post-calculus level, introducing mathematically inclined students to 
statistical concepts, methods, and theory through a data-oriented, active learning pedagogical 
approach.  We consider it essential that this course provide a self-contained introduction to 
statistics, focusing on concepts and methods but also introducing some of their mathematical 
underpinnings.  The materials provide a mixture of activities and exposition, with the activities 
leading students to explore statistical ideas and construct their own conceptual understanding. 

The principles guiding our development of these course materials are: 
• Motivate with real data, problems. 
• Foster active explorations by students. 
• Make use of mathematical competence to investigate underpinnings. 
• Use variety of computational tools. 
• Develop assortment of problem-solving skills.  
• Use simulations (tactile, technology) throughout. 
• Focus on the process of statistical investigation in each setting. 
• Introduce probability “just in time.” 

While several of these principles are equally relevant to the Stat 101 course, the focus on 
mathematical underpinnings sets this course apart.  Students also develop several strategies for 
addressing problems; for example, the use of simulation as an analysis tool and not just as a 
learning device is emphasized throughout.  With regard to use of technology tools, students use 
spreadsheet programs as well as statistical analysis packages.  The focus is on a modern approach 
to these problems.  Students will still learn basic rules and properties of probability, but in the 
context of statistical issues.  Students will be motivated by a recent case study or statistical 
application and when necessary will “detour” to a lesson in the appropriate probabilistic technique.  
In each scenario, students will follow the problem from the origin of the data to the final 
conclusion. 

The pedagogical approach is a combination of investigative activities and exposition.  
Some of the activities will be quite prescriptive, leading students clearly to a specific learning 



 5

outcome, while others will be very open-ended.  Examples of the former include guiding students 
to discover that the power of a test increases as the sample size does (other factors being equal), 
while examples of the latter include asking students to investigate the performance of alternative 
confidence interval procedures. 

The sequencing of topics emphasizes the distinction between different types of studies and 
scope of conclusions by repeatedly modeling the process of statistical inquiry through data 
collection and statistical inference.  Students first study comparisons between groups through 
experiments and observational studies with categorical then quantitative data, then they learn 
about randomly selecting samples from larger population first for one sample than two.  They see 
in the two sample case that the mathematical computations are identical to the comparison of 
groups in an experiment but the interpretations differ.  The final chapters focus on analyzing 
relationships among variables.  A preliminary outline appears below: 

Chapter 1: Comparisons and Conclusions for Categorical Data – descriptive analyses of 2x2 
tables (segmented bar graphs, conditional proportions, relative risk, odds ratio), types of 
variables, observational studies vs. controlled experiments, confounding variables, causation, 
simulation, randomization, hypergeometric probabilities, Fisher’s Exact test, Simpson’s 
paradox  

Chapter 2: Comparisons and Conclusions for Quantitative Data – descriptive analyses of 
quantitative data (dotplots, mean, standard deviation, five number summary, boxplots, 
stemplots, histograms) resistance, empirical rule, simulation of randomization test, effects of 
variability and sample size on significance. 

Chapter 3: Variation and Random Sampling – probability sampling methods, bias, effect of 
sample size on sampling distribution, bootstrapping, Bernoulli process, Binomial tests and 
intervals, types of errors, binomial approximation to hypergeometric, sign test 

Chapter 4: Models – normal distribution and other probability models, normal probability 
plots and normal probability calculations, Central Limit Theorem for sample counts and 
sample means, large sample z procedures for one proportion, t procedures for one mean, 
meaning of confidence, alternative confidence interval procedures, prediction intervals. 

Chapter 5: Comparing Two Populations – Comparison of two population proportions, large 
sample z procedures, odds-ratio inference procedures, effect of sample size, types of error, 
comparison of two population means, standard errors, t procedures, effect of sample size and 
standard deviation, bootstrapping, pairing, t approximation to randomization test. 

Chapter 6: Association and Prediction – simple linear regression (descriptive and inferential), 
logistic regression, one-way ANOVA, chi-square tests of independence, homogeneity of 
proportions. 

 
SAMPLE ACTIVITIES  

Below we present descriptions of four sample activities in order to provide a better sense 
for the materials being developed.  We have chosen these both to illustrate the course principles 
described above and also to highlight differences between activities for a Stat 101 course and for 
the more mathematically inclined audience that we are addressing. 
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• Sample Activity 1: Randomization Test 
This activity concerns a psychology experiment to study whether having an observer with 

a vested interest in a subject’s performance on a cognitive task detracts from that performance 
(Butler & Baumeister, 1998).  Twenty-three subjects played a video game ten times to establish 
their skill level.  They were then told that they would win a prize in the next game if they 
surpassed a threshold value chosen for each individual so that he/she had beaten it three times in 
ten practice games.  Subjects were randomly assigned to one of two groups.  One group (A) was 
told that their observer would also win a prize if the threshold was surpassed; the other (B) was 
told nothing about the observer winning a prize.  It turned out that 3 of 12 subjects in group A 
achieved the threshold score, compared to 8 of 11 in group B. 

Students are asked to use cards (11 black cards for “winners” who surpass the threshold 
and 12 red cards for “losers”) to simulate random assignment of these subjects to treatment 
groups, under the assumption that group membership has no effect on performance.  They pool 
their results in class to obtain an approximate sampling distribution of the number of “winners” 
randomly assigned to group A.  By determining the proportion of cases in which that number is 
three or less, they approximate the p-value of the randomization test.  Students thus begin to 
develop an intuitive understanding of the concept of statistical significance and an appreciation 
that statistical inference asks the fundamental question, “How often would such sample results 
occur by chance?”  Following their tactile simulation, we direct student to a java applet 
(www.rossmanchance.com/applets/Friendly/Friendly.html) through which they simulate the 
process thousands of times to improve their estimate of the empirical p-value (Figure 1). 

 

 
Figure 1: Simulation of “Friendly Observers” study 
 
To this point the activity is very similar to ones appropriate for Stat 101 students, for 

example as found in Activity-Based Statistics (Scheaffer, et. al., 1996) and Workshop Statistics 
(Rossman and Chance, 2001).  With this audience of mathematically inclined students, however, it 
is appropriate to ask them to take the next step and to calculate the exact p-value using 
hypergeometric probabilities.  Thus, we take this opportunity to develop the hypergeometric 
distribution by studying counting rules and combinations and the equal likeliness assumption, 
motivated by their preliminary investigations.  This probability “detour” comes “just in time” for 
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students to explore with more exactness the statistical concept of significance in the context of real 
data from a scientific study. 
 
• Sample Activity 2: Bootstrapping 

This activity has students analyze a data set obtained by Cal Poly students to compare the 
prices at two different local grocery stores.  A random sample of 35 items was selected from an 
inventory list and the exact item was found at both stores.  If the exact item was not available at 
both stores, the item was adjusted slightly (size or brand name) so that the identical item could be 
priced at both stores.  Students then describe the distribution of the differences and discuss issues 
in “matched pairs” designs.  They are then asked to carry out a bootstrap resampling to investigate 
the amount of sampling variability.  They do this by programming a small Minitab macro.  Based 
on the bootstrap estimate of the standard deviation of the sample mean, they decide whether the 
observed price difference between the two stores is statistically significant. 

The bootstrap procedure is becoming increasingly popular with practicing statisticians but 
is seldom discussed in introductory courses.  It also provides an intuitive understanding of the 
concepts of sampling variability and standard error.  With these students the simulation is easy for 
them to implement and instead of always giving them applets where the simulation is transparent 
to run, we expect these students to program the details of the simulation procedure themselves. 
 
• Sample Activity 3:  Type I and Type II Errors 

We ask students to consider a baseball player who has been a .250 career hitter but 
genuinely improves to the point of becoming a .333 hitter, a very practically significant difference 
in this context.  The question then is how likely the player is to establish that he has improved in a 
sample of 30 at-bats.  Again we ask students to investigate this issue first through simulation.  
They use technology to simulate the results of 1000 samples of 30 at-bats for a .250 hitter and also 
for a .333 hitter, note the substantial overlap between the two distributions, and estimate the (low) 
power of the test from the simulation results.  They then increase the sample size and note the 
resulting decrease in probability of type II error.  At that point we ask students to study the 
binomial distribution and to apply it, with the benefit of technology, to calculating the theoretical 
probability of type II error for these tests.  They then set up their statistical or spreadsheet package 
to perform these calculations efficiently for a variety of user-supplied sample sizes, significance 
levels, and values of the alternative probability.  Finally, students conclude the activity by 
sketching graphs of power vs. these factors and writing a report (to either the player or manager) 
explaining the effects of these factors on power.  

While a side benefit of these activities is that students become familiar with the binomial 
distribution and with calculations involving it, the emphasis is on helping them to understand the 
concepts of type I and type II errors.  Technology again serves as an indispensable tool for 
minimizing computational burdens, enabling students to explore these ideas and develop their own 
understandings of them. 
 
• Sample Activity 4: Confidence 

In this activity we begin by collecting some interesting data from the students.  They are 
asked whether they would prefer to hear good news first or to hear bad news first.  Typically the 
sample proportion preferring bad news first is quite large (e.g., .90) and our class sizes are around 
30-50 students.  As with Stat 101 students, students in this course begin to study the concept of 
confidence as they study sampling distributions through physical and then technology simulations.  
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We then ask these students to use their mathematical abilities to investigate the meaning of 
“confidence” more formally through a follow-up to the Activity-Based Statistics activity that leads 
students to view a confidence interval as the set of plausible values of a population parameter 
based on the observed sample.  Students use their knowledge of the binomial distribution along 
with technology to create exact binomial confidence intervals for a population proportion.  They 
do this by considering all parameter values from .001 to .999 and calculating the probability of 
obtaining a sample proportion as extreme or more extreme as the actual with each proposed 
parameter value in either direction.  Parameter values for which this probability exceeds α are 
considered plausible and are therefore included in the 100(1-α)% confidence interval.  Through 
this activity students also discover the duality between confidence intervals and two-sided tests of 
significance. 

We then present students with two formulas for constructing approximate, large-sample 

95% confidence intervals for a population proportion: ( )
n

pp
p

ˆ1ˆ
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an estimator that “shrinks” the sample proportion toward one-half. 
The former, of course, is the standard technique based on the normal approximation to the 

binomial distribution, and the second was proposed by Agresti and Coull (1998).  We ask students 
to compare the performance of these two interval estimators (e.g., either through computer 
simulations and/or java applets as in Figure 2).  This question naturally leads to a discussion of 
coverage probabilities and of interval lengths, and we proceed to ask students to perform 
simulations to determine coverage rates of both types of intervals for various values of the sample 
size n and the parameter value p.  Students find that for values of n and p with np < 10, the 
standard procedure produces nominal 95% confidence intervals that actually contain the 
population parameter less often than claimed, whereas the second procedure achieves a coverage 
rate much closer to the nominal confidence level. 

      
Figure 2: Comparison of confidence interval procedures with large p and small n 
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These exercises achieve several goals.  First, they help students to deepen their 
understanding of confidence level as a coverage probability under repeated sampling.  Second, 
they afford students the opportunity to investigate and evaluate recently published statistical 
methods, demonstrating the dynamic nature of the discipline.  Finally, they provide students with 
still more experience of the utility of simulation as a powerful problem-solving tool.   
 
• Sample Activity 5: Measures of Center, Minimization Criteria 

In this activity, students begin with data collected by Cal Poly students on the price of a 
house in San Luis Obispo County.  They randomly selected prices for 8 houses from 
realestate.com (Figure 3).  

120011001000900800700600500400300
listed house price ($K)

 
Figure 3: Housing Prices in San Luis Obispo County, Nov. 20, 2003 

 
We ask students to propose criteria for comparing point estimates of the center of this 

distribution.  Common criteria suggested include the sum of absolute deviations between the data 
values and the estimate, and the sum of squared deviations: 
   SAD(m) = |255- m | + |349- m | + |399- m | + |469- m| + |545- m | + |649- m | + |799- m | + |1195- m |. 

   ( ) ( )∑
=

−=
n

i
i mxmSSD
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Students investigate the behavior of these functions, analytically and graphically, and discover that 
the SAD function has an interesting piecewise linear appearance, minimized not at a unique value 
but for any value between 469 and 1545 (the two middle data values), inclusive.  Naturally, the 
SSD function is parabolic, minimized at the sample mean.  Students then use their calculus skills 
to prove that the sum of squared deviations is always minimized at the sample mean.  In addition 
to examining these mathematical properties, students also use this activity to follow up on 
previously discussed properties such as resistance of the median but not the mean to outliers.  
They also investigate other criteria, finding for example that the midrange minimizes the 
maximum absolute (or squared) deviation.  This activity also provides an introduction to the 
fundamental notion of “residual.” 
 
PILOT STUDIES 

The development began through a collection of activities that could be utilized to enhance 
an existing course.  These activities were developed and used by the authors at their respective 
institutions.  After securing an NSF grant, development continued to further field-test these 
activities, to further develop accompanying java applets, and to organize these activities and 
exposition into a stand-alone text.  Sample activities were tested at over a dozen institutions and 
students were given the opportunity to react to individual activities through webforms and 
instructors provided summative feedback as well.  This feedback further informed the 
development and revisions of the materials.  Issues raised through this feedback included: 
• Amount of structure and discussion provided for the students, including definitions of key 

terms 
• Length of activities and more flexibility in selecting different portions of activities for use 

with students 
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• Structure of student time outside of class 
• Detailed changes of individual activities, for example, slightly modifying the numbers in a 

data table to be less confusing. 
Our external evaluator to the grant, Joan Garfield, compiled the feedback from the students and 
instructors and noted: 

“Some consistent themes in the student comments were that they enjoyed hands-on 
activities, problems with real world contexts or applications, working in pairs or small 
groups instead of listening to lectures, and learning to use software to simulate or calculate 
results. Many commented that they liked using the computer to help them visualize 
concepts.” 

 
The class testers and their institutions were rather diverse, illustrating wide interest in 

replacing the existing courses for these students.  Two of the testers were teaching mathematical 
statistics courses, one was teaching an introductory statistics course that had a calculus perquisite, 
one taught a probability course, one taught a probability and statistics course for high school 
teachers, and one taught a high school statistics course. All courses were small, varying from 4 to 
25 students in the class. The textbooks used varied from an introductory text (e.g., Moore’s Basic 
Practice of Statistics) to mathematical statistics texts (three testers used the text by Wackerly, 
Mendenhall, and Schaeffer). All class testers combined a variety of instructional methods in their 
classes, including lecture, discussion, use of technology, and activities. 

As individual chapters for the stand-alone text were developed, they were reviewed by 
three statistics faculty and two former students.  Their comments also led to further refinement 
before the full course was to be taught.  Specific feedback included more highlighting of the key 
ideas for easier reference, isolating definitions instead of having them completely embedded in the 
context of an activity, and estimating the class time of individual sections. 
 
CURRENT EVALUATION EFFORTS 

The course will be taught in its entirety several times this spring. In particular, Beth 
Chance will teach the course to science majors at St. Olaf University (a liberal arts college in 
Minnesota) and Allan Rossman will teach to the course to mathematics majors, especially those 
planning to teach, and computer science majors at Cal Poly.  This latter course will substitute for a 
comparable course with a more traditional curriculum.   Individual class activities will be 
evaluated by student comments, observations of student engagement, and be external review of 
selected student writings.  These courses will be evaluated by student feedback and by comparing 
performance on common final exam questions aimed at the above principles that have been given 
in the Cal Poly course by the same instructors in recent quarters.  For example, questions will 
focus on students’ conceptual understanding of key concepts such as significance and confidence 
(see example below) and students will be asked to carry out a small simulation to explore a topic 
not discussed in the course (see example below).  We also have responses to “what is a p-value” 
by graduating statistics majors to compare to.  Student performance on more standard calculation 
questions will also be compared.  Student attitudes toward the discipline of statistics will also be 
assessed. The authors are also overseeing a senior project that is exploring the impact of 
technology, especially java applets, on students’ understanding, engagement, and retention.  In this 
project, led by Katie Pesicka, she is observing students in the class while also developing 
assessments of specific learning gains from individual activities (see example below).  We also 
plan to incorporate some specific assessments of the mathematics majors planning to teach in 
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regards to their ideas about their own future teaching of statistics.  Results of all these evaluations 
will be updated in March and in June and will be presented at the roundtable and added to the 
project webpage (www.rossmanchance.com/iscat/). 
 
Example Assessment Items 
1. A study published in the journal Neurology examined whether the drug botulinum toxin A is 
helpful for reducing pain among patients who suffer from chronic low back pain.  Thirty-one 
subjects participated in the study.  They were randomly assigned to one of two treatment groups: 
15 received the drug itself, and the other 16 received a placebo of normal saline.  The subjects’ 
pain levels were evaluated at the beginning of the study and again after three weeks and after eight 
weeks.  Naturally, the researchers were looking for evidence that the drug was more effective than 
the placebo for reducing back pain.  The results of the study after eight weeks were that 9 of the 15 
subjects who received the drug experienced a substantial reduction in pain, compared to 2 of the 
16 subjects in the placebo group.   
 
The following histogram displays the results of simulating a randomization test to assess whether 
the difference between the two groups is statistically significant.  The variable displayed is the 
number of “successes” (those who experienced a reduction in pain) randomly assigned to the drug 
group. 
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(a) What conclusion would you draw from this simulation analysis about whether the difference 
between the two groups (botulinum and placebo) is statistically significant?  Explain clearly how 
your conclusion follows from these simulation results.  Include an approximation of the p-value of 
the test. 
 
(b) Would you conclude that botulinum causes more reduction in back pain than the placebo?  
Explain.  Be sure to refer to the type of study that was conducted here in your response. 
 
 
2. Suppose that a new machine is designed to fill boxes of cereal by weight and you want to 
estimate µ, the mean weight of boxes produced by this machine.  In class we discussed the interval 
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x  + tn-1,α/2 s/ n  as an approximate 95% confidence interval for µ.  However, often managers 
want their employees to be able to calculate these intervals immediately on the factory floor.  It 
would be much simpler if they could use the sample range R as the measure of variability instead 
of the sample standard deviation s.  It turns out that with a sample of size 5, an unbiased estimator 
of the population standard deviation σ is R/2.325. 
 
(a) Perform a simulation analysis to determine whether the procedure x  + 2.571 R/(2.325 5 )  
produces 95% confidence intervals for µ.  Use a sample size of n=5, and assume that the 
population of box weights follows a normal distribution.  Clearly explain what you did in your 
simulation, the results of the simulation, and your conclusion.  Also be clear about how your 
decision follows from your simulation analysis. 
 
(b) Now calculate t-intervals for your simulated samples, and compare the t-intervals to those 
based on the sample range R.  Compare the performance of these two procedures on both coverage 
probability and interval width. 
 
Sample Student Feedback Form (K. Pesicka) 
1. Have you learned anything more about confidence intervals after using this applet? 

_ Yes 
_ No 
1 a. If you answered “yes”: What have you learned/ what concepts are more clear about 
confidence intervals now that you have worked with this applet? 
1 b. If you answered “no”: Of the concepts you already understand about confidence           

                   intervals, which ones were presented in this applet? 
 
2. A common response students give when asked to define what 95% confidence means, is... “In 
the long run, if we were to continue drawing samples of size n from the same population, 95% of 
the time this specific interval we calculated for µ [ex; (5.34, 17.9)] will contain the true population 
value of µ”. After running this applet, explain why this is incorrect. 
 
SUMMER IMMERSION WORKSHOP 

Up to thirty faculty members will be invited to a faculty development workshop on 
implementing these curricular materials at Cal Poly in June of 2004.  The goals of the workshop 
will be to provide faculty with instruction on how to successfully select, adapt, and use activities 
in their introductory, post-calculus classes, how to balance in-class and out-of-class time spent on 
activities and follow-up work, how to prepare students to use software as part of activities, how to 
manage class time, and how to provide summary discussions and wrap-ups that clarify the big 
ideas and connect the concepts in an activity to the broader scope of statistical content. 

We are currently accepting applications from individuals who are interested in learning 
more about the course and who plan to make some changes in their existing courses.  Participants 
will meet in a computer lab and will work through some of the activities directly while discussing 
issues related to the first introduction to statistics for post-calculus students.  A summary of 
participant reactions and their feedback will be discussed at the roundtable and will inform the 
next revision of the materials. An email discussion board will also be established to share 
feedback and suggestions during the following year. 
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SUGGESTED QUESTIONS FOR DICUSSION 
• Do other countries see a need for this type of course, which aims to offer a more balanced 

introduction to the discipline for mathematically inclined students? 
• Does this project appear to be addressing a need for preparing future teachers of statistics?  

Would it appear to be helpful in addressing this need in other countries as well? 
• Is there support or prioritization for the guiding principles of the development of these 

materials?  Do the sample activities/materials appear to adhere to these guiding principles? 
 
CONCLUSION 

We have argued that while the statistics education reform movement has made great strides 
and produced important materials for revamping “Stat 101” courses, a pressing need to reform 
introductory statistics courses for mathematically inclined students persists.  We propose to 
address this need by developing materials to support a data-centered, active learning pedagogical 
style at the post-calculus level.  Some of the key features of these materials are illustrated in 
common elements of the sample activities presented above, including: 
• Students conduct investigations of statistical concepts and properties. 
• Probability models are introduced in the context of statistical ideas, applied to real data. 
• Mathematical skills of students that are utilized include familiarity with functions, graphical 

and analytical, as well as counting techniques and calculus optimization methods. 
• Technology is used as a tool for such techniques as simulation and to assist with graphical 

displays and investigating effects of parameter changes. 
• Data from scientific studies, popular media, or student-collected motivate the student 

explorations. 
Our hope is that this re-designed course sequence will provide a more balanced 

introduction to statistical concepts and methods as well as theory, will increase interest in statistics 
as a potential career or side interest among mathematically inclined students, and will better 
prepare future teachers to employ student-centered pedagogy in their future classes. 
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