**A DATA-ORIENTED, ACTIVE LEARNING, POST-CALCULUS
INTRODUCTION TO STATISTICAL CONCEPTS, METHODS, AND THEORY**

** **

Allan J. Rossman and Beth L. Chance

Department of Statistics

California Polytechnic State University, San Luis Obispo, CA 93407

** **

*We
describe our project to develop of curricular materials for a course that
introduces students at the post-calculus level to statistical concepts,
methods, and theory. This course provides a more balanced introduction to the
discipline of statistics than the standard sequence in probability and
mathematical statistics. The materials incorporate many features of successful
statistics education projects that target less mathematically prepared
students. The student audiences targeted by this project are particularly
important because they have been overlooked by previous curricular reform
projects. Most importantly, the proposed audience includes prospective teachers
of statistics, introducing them to content and pedagogy that prepare them for
implementing NCTM Standards with regard to statistics and probability and for
teaching the Advanced Placement course in Statistics.*

The past decade has seen the development of a reform movement in statistics education, emphasizing features such as statistical thinking, active learning, conceptual understanding, genuine data, use of technology, collaborative learning, and communication skills. [See, for example, Cobb (1992), Cobb (1994), and Moore (1997) for overviews of this reform movement.] A wide variety of materials have been developed to support this type of instruction [see Moore (2000) for descriptions of such teaching resources]:

· Textbooks with more emphasis on statistical thinking, conceptual understanding, and genuine data are now widely available.

· Activity books and lab manuals provide investigations to foster students’ active learning.

· Depositories of genuine datasets have been compiled in books and on the web.

· JAVA applets and new software allow for more interactive, visual explorations of statistical concepts.

· Assessment tools, such as projects, focusing more on students’ conceptual understanding and ability to think statistically.

As these materials become more readily available, noticeable changes are occurring in introductory courses, especially in the areas of teaching methods, course content, and use of technology [see, for example, Garfield (2000)].

The vast majority of these educational reform efforts have been directed at what we will call “Stat 101,” an introductory, algebra-based, service course for non-majors. Relatively little attention has been paid to introductory statistics courses for mathematically inclined students majoring in fields such as mathematics, economics, the sciences, engineering, and even statistics.

Mathematics majors and other students with strong mathematical backgrounds typically choose between two options for introductory study in statistics: 1) take the Stat 101 course, or 2) take a standard two-semester sequence in probability and mathematical statistics. The first option is far from ideal, because the Stat 101 course is aimed at a different student audience and is not at a challenging mathematical level. Due to its lack of substantial mathematical content, this course often does no count towards the student’s major, providing a strong disincentive from taking the course. Unfortunately, the second and more common option is also fraught with problems.

Concerns about the nature of this sequence are not new. For example, the 1980 report of the MAA’s Committee on the Undergraduate Program in Mathematics (CUPM) stated: “The traditional undergraduate course in statistical theory has little contact with statistics as it is practiced and is not a suitable introduction to the subject.” This “math stat” sequence often presents a full semester of probability before proceeding to statistics, and then the statistics covered is often abstract in nature. As a result, students do not emerge from the sequence with a modern and balanced view of the applied as well as the theoretical aspects of the discipline of statistics. In fact, students often leave this course with less intuition and conceptual understanding than students who have taken a lower level course (e.g., data collection issues, statistical vs. practical significance, association vs. causation, robustness, diagnostics). An unfortunate consequence of this may be that the courses fail to attract some good students who would be excited by statistical applications.

Especially unfortunate is that reform efforts in statistics education have largely failed to reach prospective teachers of mathematics and statistics, most of whom experience statistics, if at all, through this “math stat” sequence. In addition to the problems described above, the “math stat” sequence also does not typically adopt the pedagogical reform features (e.g., active learning, conceptual focus, group work, written reports) that have been demonstrated to enhance student learning (Garfield, 1995). Thus, future teachers emerging from a traditional “math stat” sequence generally do not experience a model of data-oriented, activity-based teaching practices that they will be expected to adopt in their own teaching.

In particular, the Curriculum Standards of the National Council of Teachers of Mathematics (2000) and the College Board’s description of the Advanced Placement course in Statistics (2002) both emphasize the need for teachers who understand the fundamental concepts of statistics and can teach the subject using activities focused on data. Fortunately, awareness is growing in the United States that this calls for changes in the mathematical preparation of teachers. A recently released report on this issue from the Conference Board of the Mathematical Sciences (2001) recognizes the importance of better training in statistics for prospective teachers of mathematics.

There have been some efforts to incorporate more data and applications into the “math stat” sequence. Moore (1992) provides several examples for how he infuses the second semester course with more data and concrete applications, and Witmer (1992) offers a supplementary book towards these goals. Texts such as Rice (1994) now include more genuine data and applied topics such as two-way ANOVA and normal probability plots. More recently, a new text by Terrell (1999) aims to present a “unified introduction” to statistics by using statistical motivations for probability theory; its first two chapters are devoted to structural models for data and to least squares methods, before the introduction of probability models in chapter 3. Additionally, a new supplement by Nolan and Speed (2000) provides lab activities that integrate real scientific applications into statistical investigations in order to motivate the theory presented.

These changes are directed toward the second course in the two-course sequence, presumably leaving the first course to cover probability theory. This approach is especially a disservice to students who only take the first course. These students (e.g., engineering majors, mathematics education majors) often just do not have room in their curriculum for a second course. Other students, failing to see the relevance to their own discipline, may simply choose not to continue to the second course. As a consequence, Berk (1998) advocates that “we should maximize the amount of statistics in the first semester.”

Thus, while there have been efforts, they have not yet achieved widespread integration throughout the entire sequence as has been hoped. As David Moore wrote in support of our grant proposal in 1998: “The question of what to do about the standard two-course upperclass sequence in probability and statistics for mathematics majors is the most important unresolved issue in undergraduate statistics education.” We propose a rethinking of the entire two-course sequence so that the first course also addresses the call of Cobb and Moore (1997) to “design a better one-semester statistics course for mathematics majors.”

In response to this challenge, we are developing curricular materials for a two-course sequence at the post-calculus level, introducing mathematically inclined students to statistical concepts, methods, and theory through a data-oriented, active learning pedagogical approach. We consider it essential that the first course provide a self-contained introduction to statistics, focusing on concepts and methods but also introducing some of their mathematical underpinnings. The materials provide a mixture of activities and exposition, with the activities leading students to explore statistical ideas and construct their own conceptual understanding.

The principles guiding our development of these course materials are:

· Motivate with real data, problems.

· Foster active explorations by students.

· Make use of mathematical competence to investigate underpinnings.

· Use variety of computational tools.

· Develop assortment of problem-solving skills.

· Use simulations (tactile, technology) throughout.

· Focus on the process of statistical investigation in each setting.

· Introduce probability “just in time.”

While several of these principles are equally relevant to the Stat 101 course, the focus on mathematical underpinnings sets this sequence apart. Students also develop several strategies for addressing problems; for example, the use of simulation as an analysis tool and not just as a learning device is emphasized throughout. With regard to use of technology tools, students use spreadsheet programs and computer algebra systems as well as statistical analysis packages. The focus is on a modern approach to these problems. Students will still learn basic rules and properties of probability, but in the context of statistical issues. Students will be motivated by a recent case study or statistical application and when necessary will “detour” to a lesson in the appropriate probabilistic technique. In each scenario, students will follow the problem from the origin of the data to the final conclusion.

The pedagogical approach is a combination of investigative activities and exposition. Some of the activities will be quite prescriptive, leading students clearly to a specific learning outcome, while others will be very open-ended. Examples of the former include guiding students to discover that the power of a test increases as the sample size does (other factors being equal), while examples of the latter include asking students to suggest and examine the performance of alternatives to the chi-square statistic for assessing goodness-of-fit.

Below we present descriptions of four sample activities in order to provide a better sense for the materials being developed. We have chosen these both to illustrate the course principles described above and also to highlight differences between activities for a Stat 101 course and for the more mathematically inclined audience that we are addressing.

·
*Sample Activity 1:
Randomization Test*

This activity concerns a psychology experiment to study whether having an observer with a vested interest in a subject’s performance on a cognitive task detracts from that performance (Butler & Baumeister, 1998). Twenty-three subjects played a video game ten times to establish their skill level. They were then told that they would win a prize in the next game if they surpassed a threshold value chosen for each individual so that he/she had beaten it three times in ten practice games. Subjects were randomly assigned to one of two groups. One group (A) was told that their observer would also win a prize if the threshold was surpassed; the other (B) was told nothing about the observer winning a prize. It turned out that 3 of 12 subjects in group A achieved the threshold score, compared to 8 of 11 in group B.

Students are asked to use cards (11 black cards for “winners” who surpass the threshold and 12 red cards for “losers”) to simulate random assignment of these subjects to treatment groups, under the assumption that group membership has no effect on performance. They pool their results in class to obtain an approximate sampling distribution of the number of “winners” randomly assigned to group A. By determining the proportion of cases in which that number is three or less, they approximate the p-value of the randomization test. Students thus begin to develop an intuitive understanding of the concept of statistical significance and an appreciation that statistical inference asks the fundamental question, “How often would such sample results occur by chance?”

To this point the activity is very similar to ones
appropriate for Stat 101 students, for example as found in *Activity-Based
Statistics* (Scheaffer, et. al., 1996) and *Workshop Statistics*
(Rossman and Chance, 2001). With this audience of mathematically inclined
students, however, it is appropriate to ask them to take the next step and to
calculate the exact p-value using hypergeometric probabilities. Thus, we take
this occasion to develop the hypergeometric distribution by studying counting
rules and combinations and the equal likeliness assumption, motivated by their
preliminary investigations. This probability “detour” comes “just in time” for
students to explore with more exactness the statistical concept of significance
in the context of real data from a scientific study.

·
*Sample Activity 2: Power,
alpha, beta*

We ask students to consider a baseball player who has been a .250 career hitter but genuinely improves to the point of becoming a .333 hitter, a very practically significant difference in this context. The question then is how likely the player is to establish that he has improved in a sample of 30 at-bats. Again we ask students to investigate this issue first through simulation. They use technology to simulate the results of 1000 samples of 30 at-bats for a .250 hitter and also for a .333 hitter, note the substantial overlap between the two distributions, and estimate the (low) power of the test from the simulation results. They then increase the sample size and note the resulting increase in power. At that point we ask students to study the binomial distribution and to apply it, with the benefit of technology, to calculating the exact power of these tests. They then set up their statistical or spreadsheet package to perform these calculations efficiently for a variety of user-supplied sample sizes, significance levels, and values of the alternative probability. Finally, students conclude the activity by sketching graphs of power vs. these factors and writing a report (to either the player or manager) explaining the effects of these factors on power.

We then continue with this context and ask students to
calculate a and b probabilities of type I and
type II errors, respectively, for various values of the rejection region *X >
k*. We ask students to graph a vs. b to see the inverse relationship between them. We also ask students to
graph a+b and to determine the rejection
region that minimizes this sum. Finally, students consider the possibility
that the consequences of type I error might be deemed

While a side benefit of these activities is that students become familiar with the binomial distribution and with calculations involving it, the emphasis is on helping them to understand the concepts of power and of type I and type II errors. Technology again serves as an indispensable tool for minimizing computational burdens, enabling students to explore these ideas and develop their own understandings of them.

·
*Sample Activity 3: Confidence*

As with Stat 101 students, students in this course
begin to study the concept of confidence as they study sampling distributions
through physical and then technology simulations. We then ask these students
to use their mathematical abilities to investigate the meaning of “confidence”
more formally through a follow-up to the *Activity-Based Statistics*
activity that leads students to view a confidence interval as the set of
plausible values of a population parameter based on the observed sample.
Students use their knowledge of the binomial distribution along with technology
to create exact binomial confidence intervals for a population proportion.
They do this by considering all parameter values from .001 to .999 and
calculating the probability of obtaining a sample proportion as extreme as the
actual with each proposed parameter value. Parameter values for which this
probability exceeds a/2 are considered plausible and are therefore included
in the 100(1-a)% confidence interval. Through this activity students
also discover the duality between confidence intervals and two-sided tests of
significance.

We then present students with two formulas for
constructing approximate, large-sample 95% confidence intervals for a
population proportion: _{} and _{},where _{} is the ordinary sample proportion of
“successes” and _{} is
an estimator that “shrinks” the sample proportion toward one-half.

The former, of course, is the standard technique based
on the normal approximation to the binomial distribution, and the second was
proposed by Agresti and Coull (1998). We ask students to compare the
performance of these two interval estimators. This question naturally leads to
a discussion of coverage probabilities and of interval lengths, and we proceed
to ask students to perform simulations to determine coverage rates of both
types of intervals for various values of the sample size *n* and the
parameter value *p*. Students find that for values of *n* and *p*
with *np *< 10, the standard procedure produces nominal 95% confidence
intervals that actually contain the population parameter less often than
claimed, whereas the second procedure achieves a coverage rate much closer to
the nominal confidence level.

These exercises achieve several goals. First, they help students to deepen their understanding of confidence level as a coverage probability under repeated sampling. Second, they afford students the opportunity to investigate and evaluate recently published statistical methods, demonstrating the dynamic nature of the discipline. Finally, they provide students with still more experience of the utility of simulation as a powerful problem-solving tool. Whereas with Stat 101 students we try to make the simulations very easy, even transparent, to run, we expect these students to implement the details of the simulation procedure themselves.

·
*Sample Activity 4: Maximum
Likelihood*

We ask students to consider estimating how many
three-letter words are in the English language. Groups of students use one of
three different sampling designs to collect data. One group generates random
three-letter strings until the first English word appears, another does so
until five English words appear, and a third generates 100 random strings and
counts how many words result. Students then use technology to graph the
likelihood function of *p*, the probability that a random three-letter
string will form a legitimate English word, for their sampling design and
data. They then graph the likelihood function as a function of *N*, the
number of three-letter English words. Identifying the maximum value as a point
estimate leads them to discover that the invariance property of MLE’s holds in
this case. Finally, students use their calculus skills to determine the
maximum likelihood estimators for each of the three sampling designs. An
extension of this activity asks them to restrict attention to only the ten most
common letters and to collect data and perform the analysis again.

This activity introduces students to the idea of a likelihood function and to the use of a method for determining point estimators of parameters. It allows them to collect data in a fun context and gives them more practice working with probability distributions in a statistical setting. Re-emphasizing the importance of sampling design in determining one’s analysis, the activity also uses technology to emphasize the graphical, visual elements of that analysis.

We have argued that while the statistics education reform movement has made great strides and produced important materials for revamping “Stat 101” courses, a pressing need to reform introductory statistics courses for mathematically inclined students persists. We propose to address this need by developing materials to support a data-centered, active learning pedagogical style at the post-calculus level. Some of the key features of these materials are illustrated in common elements of the sample activities presented above, including:

· Students conduct investigations of statistical concepts and properties.

· Probability models are introduced in the context of statistical ideas, applied to real data.

· Mathematical skills of students that are utilized include familiarity with functions, graphical and analytical, as well as counting techniques and calculus optimization methods.

· Technology is used as a tool for such techniques as simulation and to assist with graphical displays and investigating effects of parameter changes.

· Data from scientific studies, popular media, or student-collected motivate the student explorations.

Our hope is that this re-designed course sequence will provide a more balanced introduction to statistical concepts and methods as well as theory, will increase interest in statistics as a potential career or side interest among mathematically inclined students, and will better prepare future teachers to employ student-centered pedagogy in their future classes.

Agresti, A. and Coull, B. (1998).
Approximate is Better than ‘Exact’ for Interval Estimation of Binomial
Proportions. *The American Statistician*, 52, 119-126.

Berk, K. (1998). Revamping the
Mathematical Statistics Course. *1998 Proceedings of the Section on
Statistical Education, *American Statistical Association.

Butler, J. and Baumeister, R. (1998).
The Trouble with Friendly Faces: Skilled Performance with a Supportive
Audience. *Journal of Personality and Social Psychology*, 75, 1213-1230.

CBMS (2001). *The Mathematical
Education of Teachers*. Washington: Conference Board of the Mathematical
Sciences. www.maa.org/cbms/MET_Document/index.htm.

Cobb, G. (1992). Teaching Statistics. In
L. Steen (ed.), *Heeding the Call for Change: Suggestions for Curricular
Action*. Washington: Mathematical Association of America, Notes #22, 3-43.

Cobb, G. (1995). Statistics Education: A
National Science Foundation Conference. *Journal of Statistics Education*,
1(1).

Cobb, G. and Moore, D. (1997).
Mathematics, Statistics, and Teaching. *The American Mathematical Monthly*,
104, 801-824.

College Board (2002). *AP Statistics
Course Description*. New York: The College Board. www.collegeboard.com/ap/statistics/.

CUPM (1981). Recommendations for a General Mathematical Sciences Program. Washington: Mathematical Association of America.

Garfield, J. (1995). How Students Learn
Statistics. *International Statistical Review*, 63(1), 25-34.

Garfield, J. (2000). An Evaluation of the Impact of Statistics Reform: Year 1 Report. National Science Foundation, REC-9732404.

Moore, D. (1997). New Pedagogy and New
Content: The Case of Statistics (with discussion). *International Statistical
Review*, 65, 123-165.

Moore, T. (1992). Getting More Data into
Theoretical Statistics Courses. *Primus: Problems, Resources, and Issues in
Undergraduate Mathematics Studies,* 2, 348-356.

Moore, T., ed. (2000). *Teaching
Resources for Undergraduate Statistics*. Washington: Mathematical
Association of America, Notes #51.

NCTM (2000). *Principles and Standards
for School Mathematics*. Reston, Virginia: National Council of Teachers of
Mathematics. www.nctm.org/standards/.

Nolan, D. and Speed, T. (2000). *Stat
Labs: Mathematical Statistics Through Applications*, New York: Springer-Verlag.

Rice, J. (1994). *Mathematical
Statistics and Data Analysis* (2nd edition). Pacific Grove, California:
Wadsworth Publishing.

Rossman, A. and Chance, B. (2001). *Workshop
Statistics: Discovery with Data* (2nd edition). Emeryville, California: Key
College Publishing.

Scheaffer, R., Gnanadesikan, M.,
Watkins, A., and Witmer, J. (1996). *Activity-Based Statistics*. New York:
Springer-Verlag.

Terrell, G. (1999). *Mathematical
Statistics: A Unified Introduction*. New York: Springer-Verlag.

Witmer, J. (1992). *Data Analysis: An
Introduction*. Englewood Cliffs, New Jersey: Prentice-Hall.