3.1 SELECTING SAMPLES FROM POPULATIONS I INVESTIGATION 3.1.1 SAMPLING WORDS

a. Circle 10 representative words in the following passage.

Four score and seven years ago, our fathers brought forth upon this continent a new nation: conceived in liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battlefield of that war.

We have come to dedicate a portion of that field as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we cannot dedicate, we cannot consecrate, we cannot hallow this ground. The brave men, living and dead, who struggled here have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember, what we say here, but it can never forget what they did here.

It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us, that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion, that we here highly resolve that these dead shall not have died in vain, that this nation, under God, shall have a new birth of freedom, and that government of the people, by the people, for the people, shall not perish from the earth.

The authorship of literary works is often a topic for debate. Were some of the works attributed to Shakespeare actually written by Bacon or Marlowe? Which of the anonymously published *Federalist Papers* were written by Hamilton, which by Madison, which by Jay? Who were the authors of the writings contained in the Bible? The field of "literary computing" examines ways of numerically analyzing authors' works, looking at variables such as sentence length and rates of occurrence of specific words.

The passage is of course Abraham Lincoln's Gettysburg Address, given November 19, 1863 on the battlefield near Gettysburg, Pennsylvania. In characterizing this passage, we would ideally examine every word. However, often it is much more convenient and even more efficient to examine only a subset of words. In this case, you will examine data for just 10 of the words. We are considering this passage to be a *population* of 268 words, and the 10 words you selected are therefore a *sample* from this population.

In most statistical studies, we do not have access to the entire population and can only consider data for a sample from that population. For example in Chapter 1, we examined only 116 current popcorn plant workers—not all previous workers, and not all plants; in Chapter 2, the sleep researchers performed their experiment on only 21 students rather than all students at their university. Our ultimate goal is to make conclusions about a larger population or overall process, even when we have access to only a sample from the population.

b. Consider the following variables:

Length of word (number of letters)	Туре:
Whether or not the word contains more than four letters	Туре:
Identify each variable as quantitative or categorical.	
Record the data from your sample for the these variables:	

2006 Thomson Brooks/Cole, a part of the Thomson Corporation

10

	1	2	3	4	>	6	/	8	9	10
Word										
Length										
> 4 characters?										

3.1 SELECTING SAMPLES FROM POPULATIONS I 171

Ideally, we want our sample to be *representative* of the population, that is, having the same characteristics.

c. Do you think the words you selected are representative of the population of 268 words in this passage? Explain.

d. Construct a dotplot of the distribution of the word lengths in your sample. Also calculate the sample mean length and describe the characteristics of this distribution. (Remember to label your plot and to relate your comments to the context.) What are the observational units in this graph?

To display the distribution of a categorical variable for just one sample, we can construct a *bar graph*. This graph has a separate bar for each category, with heights corresponding to the proportion of observational units in that category.

e. Construct a bar graph for the categorical variable (whether or not the word is "long"—more than four characters) for your sample and describe its distribution. (Remember to label your plot and to relate your comments to the context.) What are the observational units in this graph?

DEFINITION A *parameter* is a numerical characteristic of the population. A *statistic* is a numerical characteristic of the sample. We usually denote population parameters with Greek letters, for example, π or μ for a proportion or mean, respectively. We denote the statistics for a sample proportion and a sample mean by \hat{p} and \bar{x} , respectively.

 \wedge

f. Is the average length you calculated in (d) a parameter or a statistic? Explain. What symbol do we use to denote this value?

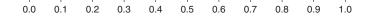
g. Is the proportion of long words you calculated in (e) a parameter or a statistic? Explain. What symbol do we use to denote this value?

h. The average length of all 268 words in this population is 4.29 letters. Is this number a parameter or a statistic? What symbol do we use to denote this value?

i. There are 99 "long" words in this population of 268 words. What proportion of the words in the population are "long"? Is this number a parameter or a statistic? What symbol do we use to denote this value?

j. Did everyone in your class obtain the same value for the sample mean? The same sample proportion?

 \wedge


© 2006 Thomson Brooks/Cole, a part of the Thomson Corporation

3.1 SELECTING SAMPLES FROM POPULATIONS 1 173

k. Construct a dotplot or histogram combining the average length of words in your sample with those of your classmates. Be sure to label the horizontal axis, and also indicate where the population mean falls. What are the observational units in this graph? Describe the distribution of these sample means, particularly with regard to where the population average falls.

1. Construct a dotplot combining the proportion of long words in your sample with those of your classmates. Be sure to label the horizontal axis, and also indicate where the population proportion falls. What are the observational units in this graph? Describe the distribution of these sample proportions, particularly with regard to where the population proportion falls.

You have witnessed the fundamental principle of *sampling variability*: Values of sample statistics *vary* when one repeatedly takes random samples from a population. A key point in analyzing these results is that now we are treating the samples as the observational units and the sample statistics as the variable of interest (so the first graph label should be something like "sample means" and the second label should be something like "sample results. Looking at the resulting pattern of variation in sample statistics is also one way to determine if a sampling method is reasonable.

m. Was your sample average word length, \bar{x} , above or below the population mean μ ? How many and what proportion of students in your class found a sample mean word length that exceeded the population mean?

n. Was your sample proportion of long words, \hat{p} , above or below the population proportion π ? How many and what proportion of students in your class found a sample proportion of long words that exceeded the population proportion?

o. Based on your answers to (k)–(n), would you say that this sampling method (asking people to circle 10 words) is likely to produce a sample that is truly representative of the population with respect to the length of the words? Explain.

DEFINITION When characteristics of the resulting samples are systematically different from characteristics of the population, we say that the sampling method is *biased*. When the distribution of the sample statistics is centered at the value of the population parameter, the sampling method is said to be *unbiased*.

For example, we suspect that your class repeatedly and consistently overestimated the average length of a word and the proportion of long words. Not everyone has to overestimate, but if there is a *tendency* to err in the same direction time and time again, then the sampling method is biased. In other words, sampling bias is evident if we repeatedly draw samples from the population and the distribution of the sample statistics is not centered at the population parameter of interest. Note that bias is a property of a sampling *method*, not of a single sample. Studies have shown that human judgment is not a good basis for selecting representative samples, so we will rely on other techniques to do the sampling for us.

p. Consider another sampling method: You close your eyes and point at the passage on page 00 and select whatever word your pen lands on. Would this sampling method be biased? If so, in which direction? Explain.

3.1 SELECTING SAMPLES FROM POPULATIONS I 175

Discussion Even though the method in (p) sounds "random," it is also going to be biased because longer words take up more space on the page and so will be more likely to be selected than shorter words. Once again, there will be a tendency to oversample the longer words and thus to repeatedly overestimate the average length and the proportion of long words.

q. Suggest a better method for selecting a sample of 10 words from this population.

DEFINITION A simple random sample gives every observational unit in the population the same chance of being selected. In fact, it gives every sample of size n the same chance of being selected. So any set of 10 words is equally likely to end up as our sample.

"Low-tech" methods for obtaining a simple random sample from a population include using a random number table or a calculator, but we will use Minitab. A random number table is constructed so that each position is equally likely to be filled by any digit from 0 to 9, and the digit in one position is unaffected by the digit in any other position. The first step is to obtain a list of every member of your population (this list is called a *sampling frame*). Then, give each observational unit on the list a unique ID number.

The following is a sampling frame for the Gettysburg address, with each word in the population numbered.

1 Four	35 in	69 dedicate	103 But,	137 add	171 here	205 these	239 that
2 score	36 a	70 a	104 in	138 or	172 to	206 honored	240 this
3 and	37 great	71 portion	105 a	139 detract.	173the	207 dead	241 nation,
4 seven	38 civil	72 of	106 larger	140 The	174 unfinished	208 we	242 under
5 years	39 war,	73 that	107 sense,	141 world	175 work	209 take	243 God,
6 ago,	40 testing	74 field	108 we	142 will	176 which	210 increased	244 shall
7 our	41 whether	75 as	109 cannot	143 little	177 they	211 devotion	245 have
8 fathers	42 that	76 a	110 dedicate,	144 note,	178 who	212 to	246 a
9 brought	43 nation,	77 final	111 we	145 nor	179 fought	213 that	247 new
10 forth	44 or	78 resting	112 cannot	146 long	180 here	214 cause	248 birth
11 upon	45 anγ	79 place	113 consecrate,	147 remember,	181 have	215 for	249 of
12this	46 nation	80 for	114 we	148 what	182 thus	216 which	250 freedom,
13 continent	47 so	81 those	115 cannot	149 we	183 far	217 they	251 and
14 a	48 conceived	82 who	116 hallow	150 say	184 so	218 gave	252 that
15 new	49 and	83 here	117 this	151 here,	185 nobly	219 the	253 government
16 nation:	50 so	84 gave	118 ground.	152 but	186 advanced.	220 last	254 of
17 conceived	51 dedicated,	85 their	119The	153 it	187 lt	221 full	255 the
18 in	52 can	86 lives	120 brave	154 can	188 is	222 measure	256 people,
19 liberty,	53 long	87 that	121 men,	155 never	189 rather	223 of	257 by
20 and	54 endure.	88 that	122 living	156 forget	190 for	224 devotion,	258 the
21 dedicated	55 We	89 nation	123 and	157 what	191 us	225 that	259 people,
22 to	56 are	90 might	124 dead,	158 they	192 to	226 we	260 for
23 the	57 met	91 live.	125 who	159 did	193 be	227 here	261 the
24 proposition	58 on	92 lt	126 struggled	160 here.	194 here	228 highly	262 people,
25 that	59 a	93 is	127 here	161 lt	195 dedicated	229 resolve	263 shall
26 all	60 great	94 altogether	128 have	162 is	196 to	230 that	264 not
27 men	61 battlefield	95 fitting	129 consecrated	163 for	197 the	231 these	265 perish
28 are	62 of	96 and	130 it ,	164 us	198 great	232 dead	266 from
29 created	63 that	97 proper	131 far	165 the	199 task	233 shall	267 the
30 equal.	64 war.	98 that	132 above	166 living,	200 remaining	234 not	268 earth.
31 Now	65 We	99 we	133 our	167 rather,	201 before	235 have	
32 we	66 have	100 should	134 poor	168 to	202 us,	236 died	
33 are	67 come	101 do	135 power	169 be	203 that	237 in	
34 engaged	68 to	102 this.	136 to	170 dedicated	204 from	238 vain,	

 \wedge

© 2006 Thomson Brooks/Cole, a part of the Thomson Corporation

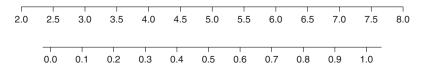
r. Open an empty Minitab worksheet. Since the largest ID number is 268, we will place the integers 1–268 in column 1:

```
MTB> set c1
DATA> 1:268
DATA> end
```

places the integers 1–268 into column 1

Then take a random sample of five ID numbers and store them in C2:

MTB> sample 5 c1 c2


selects a simple random sample of 5 items from column 1 and places them into column 2

© 2006 Thomson Brooks/Cole, a part of the Thomson Corporatior.

s. Match these ID numbers with the corresponding words in the sampling frame. Write down resulting ID numbers, the corresponding words, the length of each word, and whether or not it is long.

	1	2	3	4	5
ID number					
Word					
Length					
> 4 characters?					

t. Calculate the average word length and the proportion of "long" words in this sample of 5 words. Again combine your results with your classmates to produce a dotplot of the sample means and a dotplot on the sample proportions. Comment on each distribution. How do these distributions compare to the ones in (k) and (l)?

u. When taking random samples, did everyone obtain a sample mean equal to the population mean? Did everyone in your class obtain the same sample mean in the random samples? In what way would you say these random samples produce "better" sample results?

v. What proportion of your class obtained a sample average that was larger than the population mean? What proportion of your class obtained a sample proportion that was larger than the population proportion? Does this sampling method appear to be biased? Explain.

3.1 SELECTING SAMPLES FROM POPULATIONS I 177

w. Is it plausible that the sampling method of randomly selecting just 5 words will have less bias than the sampling method of selecting 10 words you used in (a)? Explain.

Summary

Even with randomly drawn samples, sampling variability still exists (*random sampling errors*). Although not every random sample produces the same characteristics as the population, the goal is for the sample statistics to not consistently overestimate the value of the parameter or consistently underestimate the value of the parameter. You should have found that when the samples are randomly selected, you will not have the same pattern of consistently overestimating the value of the population parameter. A *simple random sample* eliminates bias by giving every sample of size *n* the same probability—1/C(N, n)—of being selected. When the distribution of the sample statistics is centered at the value of the population parameter, the sampling method is said to be *unbiased*. When the sampling method is unbiased, we expect the individual samples to have characteristics similar to those of the population. Thus, when we select just one sample, we will feel comfortable generalizing the results from that one sample to the larger population. If the sampling method is biased, we can make no claims about the population parameter.

Furthermore, a second virtue of random samples is that we will see that sampling variability follows a predictable, long-term pattern. In particular, with random samples we will be able to estimate how far the sample statistic is likely to fall from the population parameter—that is, the size of the *random sampling error*—and what factors affect the size of this random sampling error.

In this example, we knew the value of the population parameter, but that is not usually the case. Thus, it is very important to determine whether or not the sample was selected at random before you believe that the sample results are representative of the population.

Keep in mind that *random sampling*, as you have done here, and *randomization*, as you studied in Chapters 1 and 2, are different uses of randomness. Now we are focusing on selecting a subset from a larger population and making inferences back to that population instead of trying to compare two groups as you did earlier.

Notice that the ideas of a parameter and a statistic are closely related; one describes the population and one describes the sample. For example, the average length of words in the population is a parameter, but the average length of words in the sample is a statistic. A crucial observation is that the value of a statistic will vary from sample to sample (we are now thinking of the statistic as a variable but with the samples as the observational units!). But as we saw, when we take random samples, this variation follows a very predictable pattern. Keep in mind that although the value of a statistic varies from sample to sample, a parameter does not vary.

Practice Problems 3.1.1 Literary Digest

In 1936, *Literary Digest* magazine conducted the most extensive (to that date) public opinion poll in history. The editors mailed out questionnaires to over 10 million people, whose names and addresses they obtained from telephone books and vehicle registration lists. More than 2.4 million responded, with 57% indicating that they would vote for Republican Alf Landon in the upcoming presidential election.