Fall, 2025 Monday, Oct. 20

Stat 414 - Day 9
Random Intercepts Models (Ch. 4)

Last Time

+ Fixed vs. Random effects: If the categories/labels themselves aren’t of much interest, but
want to consider the levels of the “grouping variable” as a random sample from some
larger population, can treat as random effects.

* Y = By +u; +¢€;; where we are assuming €;; ~ N(0,0%) and u; ~ N(0,7?) and
cov(eij,uj) =0

«  Benefits include fewer parameters to estimate and generalizability to larger population of
units.

« Also induces a non-zero correlation between two observations from the same Level 2
units (this allows us to model dependence within the groups)

* Results in “partial pooling”: An estimated group mean is a weighted average of the
observed sample mean and the “overall mean.” The degree of shrinkage to the overall
mean will depend on the amount of within group variation, between group variation, and
sample sizes. This allows the model to “borrow strength” from all the groups, e.g., when
estimating a group mean that had a small sample size.

+ Can demonstrate that partial pooling tends to give more accurate predictions overall than
no pooling or complete pooling

Example 1: Netherlands Language Scores

The Netherlands Language dataset examines language test scores (langPOST) in Grade 8
students (~ age 11) for elementary schools in the Netherlands. (See p. 50 for more information
about this dataset.) Students (Level 1) are nested within a random sample of schools (Level 2).
Because the schools are a random sample from a larger population, it seems natural to treat
them as random effects.

neth = read.table("https://www.rossmanchance.com/stat414F20/data/NetherlandsLanguag
e.txt", "\t", header=TRUE)

head(neth)
schoolnr pupilNR_new langPOST ses IQ _verb sex Minority denomina sch_ses
1 1 3 46 -4.73 3.13 o 0 1 -14.04
2 1 4 45 -17.73 2.63 0 1 1 -14.04
3 1 5 33 -12.73 -2.37 © (4] 1 -14.04
4 1 6 46 -4.73 -0.87 @ 0 1 -14.04
5 1 7 20 -17.73 -3.87 © 0 1 -14.04
6 1 8 30 -17.73 -2.37 0 1 1 -14.04
sch_iqv sch_min
1 -1.404 0.63
2 -1.404 0.63
3 -1.404 0.63
4 -1.404 0.63
5 -1.404 0.63
6 -1.404 0.63
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))



Fall, 2025 Monday, Oct. 20

Create the null model (using Imer for graph below)

#install.packages(Lme4)

library(1lme4d)

nullmodel = lmer(langPOST ~ 1 + (1|schoolnr), data = neth, REML = FALSE)
#using ML to better match the output in the text

summary(nullmodel)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: 1langPOST ~ 1 + (1 | schoolnr)

Data: neth
AIC BIC loglLik -2*log(L) df.resid
26601 26620 -13298 26595 3755

Scaled residuals:
Min 1Q Median 3Q Max
-4.185 -0.642 ©0.091 ©0.723 2.528

Random effects:

Groups  Name Variance Std.Dev.
schoolnr (Intercept) 18.1 4.26
Residual 62.9 7.93

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value
(Intercept) 41.005 0.325 126
performance: :icc(nullmodel)
# Intraclass Correlation Coefficient

Adjusted ICC: 0.224
Unadjusted ICC: 0.224

(a) Based on the above output, how many students are in the data set? How many
schools are in the dataset?
3758 students across 211 schools

(b) What do you learn from the ICC? Which is larger the within group or between group
variation?

In the null model, 22.4% of the variation in language scores is across schools, but most is within
schools.

Key Idea

To decide whether there is statistically significant group to group variation, you have several
options

* Use the traditional fixed-effects ANOVA

* Use a LRT (using gls) to compare the model with and without the grouping variable

« Examine confidence intervals for t
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(c) State appropriate null and alternative hypotheses for this question
H,:t%2 = 0 vs. Hy: 72 > 0 Should probably consider a one-sided test because variance can never be
negative

(d) Carry out all three approaches and summarize your results

(i) Code

anova(lm(langPOST ~ 1 + factor(schoolnr), data = neth))
Analysis of Variance Table

Response: langPOST
Df Sum Sq Mean Sq F value Pr(>F)

factor(schoolnr) 210 74802 356 5.68 <2e-16 ***
Residuals 3547 222325 63

Signif. codes: © '***' 9,001 '**' 9.01 '*' @.05 '.' 0.1 ' ' 1
(i) Code

library(nlme)

model® <- gls(langPOST ~ 1, data = neth, method = "ML")
nullmodel2 = 1lme(langPOST ~ 1, random = ~1 | schoolnr, data = neth, method = "ML
")
anova(model®, nullmodel2)
Model df AIC BIC logLik Test L.Ratio p-value
modelo 1 2 27092 27105 -13544
nullmodel2 2 3 26601 26620 -13298 1 vs 2 492.9 <.0001

I (i) Code
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confint(nullmodel)

2.5 % 97.5 %
.sigol 3.773 4.813
.sigma 7.746 8.116

(Intercept) 40.361 41.642
intervals(nullmodel2)
Approximate 95% confidence intervals

Fixed effects:
lower est. upper
(Intercept) 40.37 41 41.64

Random Effects:
Level: schoolnr
lower est. upper
sd((Intercept)) 3.77 4.257 4.807

Within-group standard error:
lower est. upper
7.745 7.928 8.115

We have convincing evidence (very small p-value) the variability in mean language scores across
schools did not occur by random sampling alone

Note: Even if this variation was not statistically significant, we might argue to still include
schoolnr in the model because that was the structure of our data!

(e) Using the null model, what do you predict for the language score of a randomly
selected student? Is this the same as the mean language score in the dataset? Why or
why not?

5’0 =41.00. This isn’t exactly the same as the sample mean y = 41.41 because we have unequal group
sizes. .

(f) What is the estimated standard deviation of the language scores? Is this the same as
the standard deviation of all the language scores in the sample? Why or why not?

The model estimates the variability in language scores in the population as V6?2 + 12 =
V18.13 + 62.85 ~ 9 compared to s, = 8.89

Consider the first estimated random effect

ranef(nullmodel)$schoolnr[1, ]
[1] -4.044

(g) How do you interpret this value?
School 1’s average language score is about 4 points below average

and its standard error
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rand_ints <- as.data.frame(ranef(nullmodel, condVar = TRUE))
rand_ints[1, ]

grpvar term grp condval condsd
1 schoolnr (Intercept) 1 -4.044 1.486

(h) Verify the calculation of this value from the model output. How would you interpret
this value? How would you use it in a confidence interval?

\/(1/(1/18.13 + 25/62.85)) = 1.486. If we were to take other random samples and find i, each time,

then the sample to sample variation in that estimate is about 1.5. In other words, we think -4.04 is
about 1.5 away from the true effect for that school in the population. So a rough 95% confidence
interval for the school effect is -4.04 + 2 x 1.486.

Examine the distribution of estimated random effects

hist(ranef(nullmodel)$schoolnr[,])

Histogram of ranef(nullmodel)$schoolnr|, ]
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#qqgnorm(rand_ints[,4])
#qqline(rand _ints[,4])

#qqgnorm(residuals(nullmodel))
#qqline(residuals(nullmodel))

#performance: :check_model (nullmodel)
#wonky residual plot?

(i) Would you say school 1 had an extreme or a typical random effect?
Minus 4 is in about the lower 20 percent based on the histogram?

(i) Code

hist(fitted.values(nullmodel))

Histogram of fitted.values(nulimodel)
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(i) Do the school effects appear to follow a roughly normal distribution?
yes

Note: So we have checked our additional model assumption. But why is it a little sketch to use
these estimated effects to check the model assumption?

Because we created the # values assuming normality so the fact that they now look pretty
normal is somewhat expected vs. an “independent chance” of what that was a reasonable
assumption to begin with.

(j) What is the estimated standard deviation of this normal distribution? (Check the
histogram to make sure you answer is reasonable)

That’s T = 4.275 Does look like about 2/3 of our estimated school effects are within 4 or 5 of the mean
of zero.
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(k) What are the largest and smallest school means we expect to see according to this
model?

The overall mean language score is estimated to be 41.0046, but we expect the SD of school means
about that overall mean to be about 4.257. So roughly 95% of schools should have a mean language
score bewteen 41 - 24.26 = 32.48 and 41 + 24.26 = 49.52. (Or 3 SDs for 99.7%)

(1) What do you predict for the average language score for a school in the 84th
percentile? (Hint: What is special about the 84th percentile in a normal distribution?)

The 84th percentile corresponds to one SD above the mean in a normal distribution. overall mean + 1
SD =41.00 + 4.275 = 45.275. This is the predicted mean language score for a school in the 84th
percentile.

A “Caterpillar plot” is a nice visual for sorting and visualizing the estimated effects.
rand_ints <- as.data.frame(ranef(nullmodel, condVar = TRUE))

ggplot(rand_ints, aes(y = condval, x = grp)) +

geom_point() +

geom_errorbar(aes(ymin = condval - 1.96*condsd,

max = condval + 1.96*condsd), width = 9) +

labs(title = "Estimated effects"”,

x = "School",
y = "Estimate and 95% CI") +
theme_bw()

Estimated effects

101

10 (Ll

Estimate and 95% Cl

#Also try?
#merTools: :pLotREsim( merTools::REsim( nullmodel ) )

Notes

»  The confidence intervals for the variance components are a little more “controversial” and
different packages may approach these methods a little differently. All of them are aiming
to test Hy: 72 = 0 vs. H,: 72 > 0. The fact the variance can never be zero can occasionally
lead to “boundary conditions” but usually something you don’t have to worry about. You
could also cut the p-value in half to reflect the one-sided alternative.
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+ Treating school as a fixed effect would “fail to reflect uncertainty resulting from variation
among schools.” That’s why the standard errors tend to be smaller. With random effects
we are able to make inferences about the population of schools, not just the ones in the
study, a more difficult task.

+ Three is a lot more controversy to the idea of picking out the schools with the largest
positive (negative) effects and conclude=ing they are doing something better (worse) than
the other schools? These are sometimes referred to as “value added models”
http://www.amstat.org/asa/files/pdfs/POL-ASAVAM-Statement.pdf

Example 2: More Netherland school analysis

Include the 1Q variable (which has been centered (though before students with missing values
were removed)) in the model.
plot(langPOST ~ IQ verb, data = neth)
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IQ_verb
modell = 1lmer(langPOST ~ 1 + IQ verb + (1|schoolnr), data = neth, REML=F)
summary(modell)
Linear mixed model fit by maximum likelihood [ 'lmerMod"']
Formula: 1angPOST ~ 1 + IQ verb + (1 | schoolnr)

Data: neth
AIC BIC logLik -2*log(L) df.resid
24920 24945 -12456 24912 3754

Scaled residuals:
Min 1Q Median 3Q Max
-4.196 -0.639 ©0.066 ©0.710 3.214

Random effects:

Groups  Name Variance Std.Dev.
schoolnr (Intercept) 9.85 3.14
Residual 40.47 6.36

Number of obs: 3758, groups: schoolnr, 211


http://www.amstat.org/asa/files/pdfs/POL-ASAVAM-Statement.pdf
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Fixed effects:

Estimate Std. Error t value
(Intercept) 41.0549 0.2434 168.7
IQ verb 2.5074 0.0544 46.1

Correlation of Fixed Effects:

(Intr)
IQ verb 0.003
confint(modell)

2.5 % 97.5 %

.sigol 2.775 3.553
.sigma 6.216 6.513
(Intercept) 40.573 41.533
IQ verb 2.400 2.614

(a) Provide interpretations of the estimated slope and intercept. (Hint: Remember
lessons learned!)

the predicted (average) language score for a (all) student(s) with ‘average IQ’ in the ‘average school’ is
41.05. The predicted increase in the language score associated with a one-unit increase in 1Q, after
adjusting for school, is 2.51.

(b) Is 1Q-verb statistically significant? How are you deciding?

the t-statistic for verbal 1Q is quite large (46.11 > 2). This also gives VERY strong evidence that IQ_verb
is helpful in predicting language scores, after adjusting for school.The confidence interval is (2.40, 2.61)
which does not include zero. You could also do a likelihood ratio test for the models with and without
verbal 1Q.

Data: neth
Models:
nullmodel: 1angPOST ~ 1 + (1 | schoolnr)
modell: 1angPOST ~ 1 + IQ verb + (1 | schoolnr)
npar  AIC BIC loglLik -2*1log(L) Chisq Df Pr(>Chisq)

nullmodel 3 26601 26620 -13298 26595
modell 4 24920 24945 -12456 24912 1683 1 <2e-16 ***
Signif. codes: © '***' @9.001 '**' 9.01 '*' @©.05 '.' 0.1 ' ' 1

(c) What is the estimated variation in responses for a particular value of IQ_verb?
This is the new & = 6.362, for a particular school (conditional on verbal 1Q and the school effect)

(d) What percentage of the Level 1 variance was explained by verbal 1Q?

The new within-school residual variance estimate is 40.469, which is down from 62.85: (62.85 -
40.469)/62.85) = .356. So 35.6% of the within school variability in language scores was explained by
verbal 1Q.

(e) What percentage of the school-to-school variability in average language scores was
explained by verbal 1Q?



Fall, 2025 Monday, Oct. 20

How much has T decreased? Was 18.13 and is now 9.845, so (18.13-9.845)/18.13 = 0.457, so 45.7% of
variation in language scores across the schools is accounted for by differences in the average verbal IQ
scores across the schools.

(f) Which has changed more, the estimated within-group variation or the estimated
between-group variation? Does this make sense in context? Is it possible for both of
them to decrease? What does that mean?

Student verbal |Q scores actually explains more school-to-school variation in average language scores.
This tells us that the verbal IQ scores vary across the schools as well as within the schools.

(g) What percentage of the total variance was explained by verbal 1Q?

(18.13 + 62.85 - (9.845 + 40.469))/(18.13 + 62.85) = 0.379, s0 37.9%

(h) What is the new value of the ICC? How do you interpret this? What would it mean for
this value to be super close to zero?

The new ICCis 9.845/(9.845 + 40.469) = 0.195. This tells us how correlated the language scores of
between pairs of students in the same school with the same verbal IQ. Can also interpret as the
proportion of variability that is at the school level after accounting for the verbal IQ scores; would be
zero if the verbal IQ scores explained all of the school to school variation in language scores.

(i) What would a graph of this model look like?

Lots of parallel lines with the same slope but different intercepts (school effects)

A neat graph showing the fitted lines:

I (i) Code
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preds = predict(modell, newdata = neth)

ggplot(neth, aes(x = IQ_verb , y = preds , group = schoolnr, color = schoolnr )) +
geom_smooth(method = "1lm", alpha = .5, se = FALSE) +
geom_jitter(data = neth, aes(y = langPOST), alpha = .1) +

theme_bw()
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(j) What if we had treated the schools as fixed effects

Same picture but lines will be more spread out vertically, no ‘shrinkage’.

I (i) Code
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(k) What if we had ignored the grouping by schools?
summary(1lmmodel <- 1lm(neth$langPOST~neth$IQ_verb))

Call:

Im(formula = neth$langPOST ~ neth$IQ verb)

Estimate Std. Error t value Pr(>|t])

Residuals:

Min 1Q Median 3Q
-29.315 -4.355 0.662
Coefficients:

(Intercept) 41.2958 0.1152
neth$IQ verb 2.6513 0.0564

Signif. codes: © '***' @.001 '**'

Max

5.034 25.941

359 <2e-16 ***
47  <2e-16 ***

0.01 '*' 0.05

el N1
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Residual standard error: 7.06 on 3756 degrees of freedom

Multiple R-squared: .37, Adjusted R-squared: ©0.37

F-statistic: 2.21e+03 on 1 and 3756 DF, p-value: <2e-16

The slope looks similar but is actually different by about 3 SEs and notice the intercept SE is about
twice as large (think of it like adjusting for effective sample size)

Optional

The Performance package reports many of the numbers we just calculated but also some
other ones that can be hard to understand. See handout in canvas for more details.
performance: :model_performance(modell)

# Indices of model performance

AIC | AICc | BIC | R2 (cond.) | R2 (marg.) | ICC | RMSE | Sigma

24925.1 | 24925.2 | 24950.1 | 0.471 | ©.342 | ©.196 | 6.219 | 6.362
performance: :icc(modell)
# Intraclass Correlation Coefficient

Adjusted ICC: 0.196
Unadjusted ICC: 0.129
performance:::r2(modell)

# R2 for Mixed Models

Conditional R2: 0.471
Marginal R2: 0.342
var(model.matrix(modell) %*% fixef(modell)) #26.18, variance explained by fixed ef
fects
[,1]
[1,] 26.18
performance::r2(modell, by group = TRUE)
# Explained Variance by Level

Level 1 | 0.356
schoolnr | 0.457

Notes:

*  We can think of ICC as the proportion of total variance explained by the grouping variable
in the null model and R? as the proportion explained by the fixed effects, but now 3
sources of variation: sigma, tau, fixed effects

« The difference between adjusted/unadjusted ICC is whether you take into account the
“variance explained by the fixed effects” in the denominator as well (the change in
unexplained variation when the fixed effect is added to the model)
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« This is actually an area of current research (“the literature does not seem to have
converged on this topic”) in how to calculate R? values for these models as the formulas
provided here can actually turn out to be negative!

Reference: Nakagawa S, Johnson P, Schielzeth H (2017) The coefficient of determination R2
and intra-class correlation coefficient from generalized linear mixed-effects models revisted
and expanded. J. R. Soc. Interface 14. doi: 10.1098/rsif.2017.0213





