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Stat 414 - Day 9 
Random Intercepts Models (Ch. 4) 

Last Time 

• Fixed vs. Random effects: If the categories/labels themselves aren’t of much interest, but 
want to consider the levels of the “grouping variable” as a random sample from some 
larger population, can treat as random effects. 

• 𝑌𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝜖𝑖𝑗 where we are assuming 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) and 𝑢𝑗 ∼ 𝑁(0, 𝜏2) and 

𝑐𝑜𝑣(𝜖𝑖𝑗 , 𝑢𝑗) = 0 

• Benefits include fewer parameters to estimate and generalizability to larger population of 
units. 

• Also induces a non-zero correlation between two observations from the same Level 2 
units (this allows us to model dependence within the groups) 

• Results in “partial pooling”: An estimated group mean is a weighted average of the 
observed sample mean and the “overall mean.” The degree of shrinkage to the overall 
mean will depend on the amount of within group variation, between group variation, and 
sample sizes. This allows the model to “borrow strength” from all the groups, e.g., when 
estimating a group mean that had a small sample size. 

• Can demonstrate that partial pooling tends to give more accurate predictions overall than 
no pooling or complete pooling 

Example 1: Netherlands Language Scores 

The Netherlands Language dataset examines language test scores (langPOST) in Grade 8 
students (~ age 11) for elementary schools in the Netherlands. (See p. 50 for more information 
about this dataset.) Students (Level 1) are nested within a random sample of schools (Level 2). 
Because the schools are a random sample from a larger population, it seems natural to treat 
them as random effects. 
neth = read.table("https://www.rossmanchance.com/stat414F20/data/NetherlandsLanguag
e.txt", "\t", header=TRUE) 
head(neth) 
  schoolnr pupilNR_new langPOST    ses IQ_verb sex Minority denomina sch_ses 
1        1           3       46  -4.73    3.13   0        0        1  -14.04 
2        1           4       45 -17.73    2.63   0        1        1  -14.04 
3        1           5       33 -12.73   -2.37   0        0        1  -14.04 
4        1           6       46  -4.73   -0.87   0        0        1  -14.04 
5        1           7       20 -17.73   -3.87   0        0        1  -14.04 
6        1           8       30 -17.73   -2.37   0        1        1  -14.04 
  sch_iqv sch_min 
1  -1.404    0.63 
2  -1.404    0.63 
3  -1.404    0.63 
4  -1.404    0.63 
5  -1.404    0.63 
6  -1.404    0.63 
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))  
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Create the null model (using lmer for graph below) 
#install.packages(lme4) 
library(lme4) 
nullmodel = lmer(langPOST ~ 1 + (1|schoolnr), data = neth, REML = FALSE) 
#using ML to better match the output in the text 
summary(nullmodel) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: langPOST ~ 1 + (1 | schoolnr) 
   Data: neth 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    26601     26620    -13298     26595      3755  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.185 -0.642  0.091  0.723  2.528  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 schoolnr (Intercept) 18.1     4.26     
 Residual             62.9     7.93     
Number of obs: 3758, groups:  schoolnr, 211 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   41.005      0.325     126 
performance::icc(nullmodel)   
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.224 
  Unadjusted ICC: 0.224 

(a) Based on the above output, how many students are in the data set? How many 
schools are in the dataset? 
3758 students across 211 schools 

(b) What do you learn from the ICC? Which is larger the within group or between group 
variation? 

In the null model, 22.4% of the variation in language scores is across schools, but most is within 
schools. 

Key Idea 

To decide whether there is statistically significant group to group variation, you have several 
options 
• Use the traditional fixed-effects ANOVA 
• Use a LRT (using gls) to compare the model with and without the grouping variable 
• Examine confidence intervals for 𝜏 
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(c) State appropriate null and alternative hypotheses for this question 
𝐻𝑜: 𝜏2 = 0 vs. 𝐻𝑎: 𝜏2 > 0 Should probably consider a one-sided test because variance can never be 
negative 

(d) Carry out all three approaches and summarize your results 

  Code 

anova(lm(langPOST ~ 1 + factor(schoolnr), data = neth)) 
Analysis of Variance Table 
 
Response: langPOST 
                   Df Sum Sq Mean Sq F value Pr(>F)     
factor(schoolnr)  210  74802     356    5.68 <2e-16 *** 
Residuals        3547 222325      63                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

  

  Code 

library(nlme) 
model0 <- gls(langPOST ~ 1, data = neth, method = "ML") 
nullmodel2 = lme(langPOST ~ 1, random = ~1 | schoolnr, data = neth, method = "ML
") 
anova(model0, nullmodel2) 
           Model df   AIC   BIC logLik   Test L.Ratio p-value 
model0         1  2 27092 27105 -13544                        
nullmodel2     2  3 26601 26620 -13298 1 vs 2   492.9  <.0001 

  

  Code 
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confint(nullmodel) 
             2.5 % 97.5 % 
.sig01       3.773  4.813 
.sigma       7.746  8.116 
(Intercept) 40.361 41.642 
intervals(nullmodel2) 
Approximate 95% confidence intervals 
 
 Fixed effects: 
            lower est. upper 
(Intercept) 40.37   41 41.64 
 
 Random Effects: 
  Level: schoolnr  
                lower  est. upper 
sd((Intercept))  3.77 4.257 4.807 
 
 Within-group standard error: 
lower  est. upper  
7.745 7.928 8.115  

We have convincing evidence (very small p-value) the variability in mean language scores across 
schools did not occur by random sampling alone 

Note: Even if this variation was not statistically significant, we might argue to still include 
schoolnr in the model because that was the structure of our data! 

(e) Using the null model, what do you predict for the language score of a randomly 
selected student? Is this the same as the mean language score in the dataset? Why or 
why not? 

𝛽̂0 =41.00. This isn’t exactly the same as the sample mean 𝑦‾ = 41.41 because we have unequal group 
sizes. . 

(f) What is the estimated standard deviation of the language scores? Is this the same as 
the standard deviation of all the language scores in the sample? Why or why not? 

The model estimates the variability in language scores in the population as √𝜎̂2 + 𝜏̂2 =

√18.13 + 62.85 ~ 9 compared to 𝑠𝑦 = 8.89. 

Consider the first estimated random effect 

ranef(nullmodel)$schoolnr[1,] 
[1] -4.044 

(g) How do you interpret this value? 
School 1’s average language score is about 4 points below average 

and its standard error 
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rand_ints <- as.data.frame(ranef(nullmodel, condVar = TRUE)) 
rand_ints[1,] 
    grpvar        term grp condval condsd 
1 schoolnr (Intercept)   1  -4.044  1.486 

(h) Verify the calculation of this value from the model output. How would you interpret 
this value? How would you use it in a confidence interval? 

√(1/(1/18.13 + 25/62.85)) = 1.486. If we were to take other random samples and find 𝑢̂1 each time, 

then the sample to sample variation in that estimate is about 1.5. In other words, we think -4.04 is 
about 1.5 away from the true effect for that school in the population. So a rough 95% confidence 
interval for the school effect is -4.04 ± 2 x 1.486. 

Examine the distribution of estimated random effects 

hist(ranef(nullmodel)$schoolnr[,]) 

 
plot(ranef(nullmodel))  
$schoolnr 
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#qqnorm(rand_ints[,4]) 
#qqline(rand_ints[,4]) 
  
#qqnorm(residuals(nullmodel)) 
#qqline(residuals(nullmodel)) 
 
#performance::check_model(nullmodel) 
#wonky residual plot? 

(i) Would you say school 1 had an extreme or a typical random effect? 
Minus 4 is in about the lower 20 percent based on the histogram? 

  Code 

hist(fitted.values(nullmodel)) 

 

(i) Do the school effects appear to follow a roughly normal distribution? 

yes 

Note: So we have checked our additional model assumption. But why is it a little sketch to use 
these estimated effects to check the model assumption? 

Because we created the 𝑢̂ values assuming normality so the fact that they now look pretty 
normal is somewhat expected vs. an “independent chance” of what that was a reasonable 
assumption to begin with. 

(j) What is the estimated standard deviation of this normal distribution? (Check the 
histogram to make sure you answer is reasonable) 

That’s 𝜏̂ = 4.275 Does look like about 2/3 of our estimated school effects are within 4 or 5 of the mean 
of zero. 
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(k) What are the largest and smallest school means we expect to see according to this 
model? 

The overall mean language score is estimated to be 41.0046, but we expect the SD of school means 
about that overall mean to be about 4.257. So roughly 95% of schools should have a mean language 
score bewteen 41 - 24.26 = 32.48 and 41 + 24.26 = 49.52. (Or 3 SDs for 99.7%) 

(l) What do you predict for the average language score for a school in the 84th 
percentile? (Hint: What is special about the 84th percentile in a normal distribution?) 

The 84th percentile corresponds to one SD above the mean in a normal distribution. overall mean + 1 
SD = 41.00 + 4.275 = 45.275. This is the predicted mean language score for a school in the 84th 
percentile. 

A “Caterpillar plot” is a nice visual for sorting and visualizing the estimated effects. 
rand_ints <- as.data.frame(ranef(nullmodel, condVar = TRUE)) 
ggplot(rand_ints, aes(y = condval, x = grp)) + 
geom_point() + 
geom_errorbar(aes(ymin = condval - 1.96*condsd, 
max = condval + 1.96*condsd), width = 0) + 
labs(title = "Estimated effects", 
x = "School", 
y = "Estimate and 95% CI") + 
theme_bw() 

 
#Also try? 
#merTools::plotREsim( merTools::REsim( nullmodel ) ) 

Notes 
• The confidence intervals for the variance components are a little more “controversial” and 

different packages may approach these methods a little differently. All of them are aiming 

to test 𝐻0: 𝜏2 = 0 𝑣𝑠. 𝐻𝑎: 𝜏2 > 0. The fact the variance can never be zero can occasionally 
lead to “boundary conditions” but usually something you don’t have to worry about. You 
could also cut the p-value in half to reflect the one-sided alternative. 
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• Treating school as a fixed effect would “fail to reflect uncertainty resulting from variation 
among schools.” That’s why the standard errors tend to be smaller. With random effects 
we are able to make inferences about the population of schools, not just the ones in the 
study, a more difficult task. 

• Three is a lot more controversy to the idea of picking out the schools with the largest 
positive (negative) effects and conclude=ing they are doing something better (worse) than 
the other schools? These are sometimes referred to as “value added models” 
http://www.amstat.org/asa/files/pdfs/POL-ASAVAM-Statement.pdf 

Example 2: More Netherland school analysis 

Include the IQ variable (which has been centered (though before students with missing values 
were removed)) in the model. 
plot(langPOST ~ IQ_verb, data = neth) 

 
model1 = lmer(langPOST ~ 1 + IQ_verb + (1|schoolnr), data = neth, REML=F) 
summary(model1) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: langPOST ~ 1 + IQ_verb + (1 | schoolnr) 
   Data: neth 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    24920     24945    -12456     24912      3754  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.196 -0.639  0.066  0.710  3.214  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 schoolnr (Intercept)  9.85    3.14     
 Residual             40.47    6.36     
Number of obs: 3758, groups:  schoolnr, 211 
 

http://www.amstat.org/asa/files/pdfs/POL-ASAVAM-Statement.pdf
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Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  41.0549     0.2434   168.7 
IQ_verb       2.5074     0.0544    46.1 
 
Correlation of Fixed Effects: 
        (Intr) 
IQ_verb 0.003  
confint(model1) 
             2.5 % 97.5 % 
.sig01       2.775  3.553 
.sigma       6.216  6.513 
(Intercept) 40.573 41.533 
IQ_verb      2.400  2.614 

(a) Provide interpretations of the estimated slope and intercept. (Hint: Remember 
lessons learned!) 
the predicted (average) language score for a (all) student(s) with ‘average IQ’ in the ‘average school’ is 
41.05. The predicted increase in the language score associated with a one-unit increase in IQ, after 
adjusting for school, is 2.51. 

(b) Is IQ-verb statistically significant? How are you deciding? 

the t-statistic for verbal IQ is quite large (46.11 > 2). This also gives VERY strong evidence that IQ_verb 
is helpful in predicting language scores, after adjusting for school.The confidence interval is (2.40, 2.61) 
which does not include zero. You could also do a likelihood ratio test for the models with and without 
verbal IQ. 

Data: neth 
Models: 
nullmodel: langPOST ~ 1 + (1 | schoolnr) 
model1: langPOST ~ 1 + IQ_verb + (1 | schoolnr) 
          npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)     
nullmodel    3 26601 26620 -13298     26595                         
model1       4 24920 24945 -12456     24912  1683  1     <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(c) What is the estimated variation in responses for a particular value of IQ_verb? 
This is the new 𝜎̂ = 6.362, for a particular school (conditional on verbal IQ and the school effect) 

(d) What percentage of the Level 1 variance was explained by verbal IQ? 

The new within-school residual variance estimate is 40.469, which is down from 62.85: (62.85 - 
40.469)/62.85) = .356. So 35.6% of the within school variability in language scores was explained by 
verbal IQ. 

(e) What percentage of the school-to-school variability in average language scores was 
explained by verbal IQ? 
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How much has 𝜏 decreased? Was 18.13 and is now 9.845, so (18.13-9.845)/18.13 = 0.457, so 45.7% of 
variation in language scores across the schools is accounted for by differences in the average verbal IQ 
scores across the schools. 

(f) Which has changed more, the estimated within-group variation or the estimated 
between-group variation? Does this make sense in context? Is it possible for both of 
them to decrease? What does that mean? 

Student verbal IQ scores actually explains more school-to-school variation in average language scores. 
This tells us that the verbal IQ scores vary across the schools as well as within the schools. 

(g) What percentage of the total variance was explained by verbal IQ? 

(18.13 + 62.85 - (9.845 + 40.469))/(18.13 + 62.85) = 0.379, so 37.9% 

(h) What is the new value of the ICC? How do you interpret this? What would it mean for 
this value to be super close to zero? 

The new ICC is 9.845/(9.845 + 40.469) = 0.195. This tells us how correlated the language scores of 
between pairs of students in the same school with the same verbal IQ. Can also interpret as the 
proportion of variability that is at the school level after accounting for the verbal IQ scores; would be 
zero if the verbal IQ scores explained all of the school to school variation in language scores. 

(i) What would a graph of this model look like? 

Lots of parallel lines with the same slope but different intercepts (school effects) 

A neat graph showing the fitted lines: 

  Code 
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preds = predict(model1, newdata = neth) 
 
ggplot(neth, aes(x = IQ_verb , y = preds , group = schoolnr, color = schoolnr )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_jitter(data = neth, aes(y = langPOST), alpha = .1) + 
  theme_bw() 

 

(j) What if we had treated the schools as fixed effects 

Same picture but lines will be more spread out vertically, no ‘shrinkage’. 

  Code 
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(k) What if we had ignored the grouping by schools? 

summary(lmmodel <- lm(neth$langPOST~neth$IQ_verb)) 
 
Call: 
lm(formula = neth$langPOST ~ neth$IQ_verb) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-29.315  -4.355   0.662   5.034  25.941  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)   41.2958     0.1152     359   <2e-16 *** 
neth$IQ_verb   2.6513     0.0564      47   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Residual standard error: 7.06 on 3756 degrees of freedom 
Multiple R-squared:  0.37,  Adjusted R-squared:  0.37  
F-statistic: 2.21e+03 on 1 and 3756 DF,  p-value: <2e-16 

The slope looks similar but is actually different by about 3 SEs and notice the intercept SE is about 
twice as large (think of it like adjusting for effective sample size) 

Optional 

The Performance package reports many of the numbers we just calculated but also some 
other ones that can be hard to understand. See handout in canvas for more details. 
performance::model_performance(model1) 
# Indices of model performance 
 
AIC     |    AICc |     BIC | R2 (cond.) | R2 (marg.) |   ICC |  RMSE | Sigma 
----------------------------------------------------------------------------- 
24925.1 | 24925.2 | 24950.1 |      0.471 |      0.342 | 0.196 | 6.219 | 6.362 
performance::icc(model1) 
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.196 
  Unadjusted ICC: 0.129 
performance:::r2(model1) 
# R2 for Mixed Models 
 
  Conditional R2: 0.471 
     Marginal R2: 0.342 
var(model.matrix(model1) %*% fixef(model1))  #26.18, variance explained by fixed ef
fects 
      [,1] 
[1,] 26.18 
performance::r2(model1, by_group = TRUE) 
# Explained Variance by Level 
 
Level    |    R2 
---------------- 
Level 1  | 0.356 
schoolnr | 0.457 

Notes: 
• We can think of ICC as the proportion of total variance explained by the grouping variable 

in the null model and 𝑅2 as the proportion explained by the fixed effects, but now 3 
sources of variation: sigma, tau, fixed effects 

• The difference between adjusted/unadjusted ICC is whether you take into account the 
“variance explained by the fixed effects” in the denominator as well (the change in 
unexplained variation when the fixed effect is added to the model) 
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• This is actually an area of current research (“the literature does not seem to have 

converged on this topic”) in how to calculate 𝑅2 values for these models as the formulas 
provided here can actually turn out to be negative! 

Reference: Nakagawa S, Johnson P, Schielzeth H (2017) The coefficient of determination R2 
and intra-class correlation coefficient from generalized linear mixed-effects models revisted 
and expanded. J. R. Soc. Interface 14. doi: 10.1098/rsif.2017.0213 




