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Stat 414 - Day 8 
Fixed vs. Random Effects 

Last Time 
• ICC is a way of measuring how similar observations are within the same group of a 

categorical variable. 
• One way to model correlated errors is using generalized least squares and specifying 

specific correlation patterns to be estimated/

correlation matrix 
• Accounting for the correlation will impact the effective sample size 
• Expect 𝑆𝑆𝑆𝑆(𝑦𝑦‾) to increase (by 1 + (𝑛𝑛‾ − 1)𝜌𝜌) 
• 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑗𝑗� usually increases as well, especially if 𝑥𝑥𝑗𝑗 mostly varies between clusters. 
• If you have an important categorical variable, especially if you used randomized block 

design or cluster sampling, then that variable must be included in your model. 
• Is possible this will also account for the correlated observations (e.g., within a region, 

heart disease rates from different cities are essentially independent) 
• When adding a categorical variable to the model, we have the choice of treating that 

variable as a fixed effect (what we have been doing) or as a random effect. 

Reminder: 
• When variables are centered, interpret the intercept at the average value of the predictor 

variable(s). 

Random effects models 

Model equation: 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖 where 𝑢𝑢𝑗𝑗 ~ 𝑁𝑁(0, 𝜏𝜏2) and 𝜖𝜖𝑖𝑖𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2). We also assume 
𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑗𝑗 , 𝜖𝜖𝑖𝑖𝑖𝑖� = 0. 

Consequences 

𝑉𝑉�𝑌𝑌𝑖𝑖𝑖𝑖� = 𝑉𝑉(𝛽𝛽0) + 𝑉𝑉�𝑢𝑢𝑗𝑗� + 𝑉𝑉�𝜖𝜖𝑖𝑖𝑖𝑖� = 𝜏𝜏2 + 𝜎𝜎2 
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𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖,𝑌𝑌𝑘𝑘𝑘𝑘� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖,𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑘𝑘𝑘𝑘� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 ,𝑢𝑢𝑗𝑗� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 , 𝜖𝜖𝑘𝑘𝑘𝑘� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 , 𝜖𝜖𝑖𝑖𝑖𝑖� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖𝑖𝑖𝑖, 𝜖𝜖𝑘𝑘𝑘𝑘�
= 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 ,𝑢𝑢𝑗𝑗� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖𝑖𝑖𝑖, 𝜖𝜖𝑘𝑘𝑘𝑘� = 𝜏𝜏2 

Example 1: Finger tapping 
fingertapstudy = read.table("http://www.isi-stats.com/isi2/data/Fingertap.txt","\t"
, header=TRUE) 
 
#install.packages("nlme") 
library(nlme) 
rm1 = lme(fixed = Taps ~ 1 , random = ~1 | participant, data = fingertapstudy, meth
od="REML") 
 
summary(rm1) 
Linear mixed-effects model fit by REML 
  Data: fingertapstudy  
    AIC   BIC logLik 
  102.3 103.5 -48.17 
 
Random effects: 
 Formula: ~1 | participant 
        (Intercept) Residual 
StdDev:       23.63    12.27 
 
Fixed effects:  Taps ~ 1  
            Value Std.Error DF t-value p-value 
(Intercept)   474     12.34  8   38.43       0 
 
Standardized Within-Group Residuals: 
    Min      Q1     Med      Q3     Max  
-1.2496 -0.7895  0.1400  0.5698  1.3015  
 
Number of Observations: 12 
Number of Groups: 4  
logLik(rm1) 
'log Lik.' -48.17 (df=3) 

(a) How many parameters are estimated in this model? What are they? 
3 parameters: intercept, tau, sigma 

(b) What are the estimated variance components? 

𝜏̂𝜏 = 23.63 (between group variability) 

𝜎𝜎� = 12.127 (within group variability) 

(c) What is the estimated total variance in the response using this model? 
23.632 + 12.272 = 709 
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(d) What is the variance-covariance matrix of the responses? 

getVarCov(rm1, subject = "1", type = "marginal")[[1]] 
      1     2     3 
1 709.0 558.5 558.5 
2 558.5 709.0 558.5 
3 558.5 558.5 709.0 
cov2cor(getVarCov(rm1, subject = "1", type = "marginal")[[1]]) 
       1      2      3 
1 1.0000 0.7877 0.7877 
2 0.7877 1.0000 0.7877 
3 0.7877 0.7877 1.0000 

Here, marginal means we are looking at the y-values rather than the errors. 
#what does this give you? 
getVarCov(rm1, type = "conditional") 
participant A  
Conditional variance covariance matrix 
      1     2     3 
1 150.5   0.0   0.0 
2   0.0 150.5   0.0 
3   0.0   0.0 150.5 
  Standard Deviations: 12.27 12.27 12.27  
These are the 𝜎𝜎�2 values (within group) 

(d) How much of the (estimated) total variation is due to the groups? 

𝜏̂𝜏2/(𝜏̂𝜏2 + 𝜎𝜎�2) 

This number should look familiar: 

#install.packages("performance") 
library(performance) 
performance(rm1) 
# Indices of model performance 
 
AIC   |  AICc |   BIC | R2 (cond.) | R2 (marg.) |   ICC |   RMSE |  Sigma 
------------------------------------------------------------------------- 
102.3 | 105.3 | 103.8 |      0.788 |          0 | 0.788 | 10.170 | 12.268 
icc(rm1) 
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.788 
  Unadjusted ICC: 0.788 

(e) Are they any additional model assumptions to worry about? 

Have the usual linearity and equal variability and now normality of both “epsilons” and “uj” 
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Key Ideas 
• Random effects models account for both group to group variation and intraclass 

correlation at once. 
• They are much more robust to issues like unequal group sizes, missing observations. 
• Can show they often have better predictive performance than fixed effects models (see 

HW 4). 
• You can think of the 𝑢𝑢𝑖𝑖 as “level 2 residuals” 

Example 2: Adult literacy 

Recall the study on adult literacy from HW 3. 
adultlit <- read.table("https://www.rossmanchance.com/stat414/data/adultlit.txt", h
eader=TRUE) 
model1 <- lm(sessions ~ group, data = adultlit); summary(model1) 
 
Call: 
lm(formula = sessions ~ group, data = adultlit) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-6.686 -1.686  0.314  2.314  8.314  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)    5.280      0.342   15.45   <2e-16 *** 
group          1.405      0.504    2.79    0.006 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 3.1 on 150 degrees of freedom 
Multiple R-squared:  0.0493,    Adjusted R-squared:  0.043  
F-statistic: 7.78 on 1 and 150 DF,  p-value: 0.00597 

Treatments were randomly assigned to classes, so it’s important that we acknowledge this in 
the analysis. We could scale the standard errors using effective sample size. This gave us a 
SE for the treatment variable of about 0.8 rather than 0.5 so the treatment variable was no 
longer significant. 

Alternatively, we can include the class variable in the model. Doing so as fixed effects had 
some issues (see HW 3), mostly due to unequal sample sizes and small sample sizes (e.g., 
class 361 had only 2 students). 

table(adultlit$classid) 
 
 57  58  84  85  86  92 114 115 116 175 176 177 178 192 242 293 361 362 401 421  
  7   8   9   7   4   5   4   6   5   7   6   7   5   6   6   3   2   7   6   5  
422 441 451 452 471 481 491 541  
  5   5   5   5   4   4   4   5  
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But we can easily fit the model treating the classid as random effects. 
modelRE = lme(fixed = sessions ~ 1 + group, random = ~1 | classid, data = adultlit) 
summary(modelRE) 
Linear mixed-effects model fit by REML 
  Data: adultlit  
    AIC   BIC logLik 
  753.2 765.2 -372.6 
 
Random effects: 
 Formula: ~1 | classid 
        (Intercept) Residual 
StdDev:       1.935    2.491 
 
Fixed effects:  sessions ~ 1 + group  
            Value Std.Error  DF t-value p-value 
(Intercept) 5.209    0.5904 124   8.823  0.0000 
group       1.485    0.8422  26   1.763  0.0896 
 Correlation:  
      (Intr) 
group -0.701 
 
Standardized Within-Group Residuals: 
    Min      Q1     Med      Q3     Max  
-2.5208 -0.4369  0.1710  0.5866  1.9801  
 
Number of Observations: 152 
Number of Groups: 28  

(a) What is the SE of the group variable in this model? 
.84, very similar to the .8 you got in the homework by tweaking based on effective sample size 

(b) Does it make sense to treat the classid as random effects in this study? 

Random vs. Fixed Effects 

• do you care about that factor (e.g., don’t necessarily want to compare the participants to 
each other, but do want to compare the treatments to each other) 

• is it reasonable to consider the “level 2” units as a random sample or was that an intention 
feature of the study design? If so, RE will allow you to generalize from the units in your 
study to the population of units 

classid in adult literacy study: random 

Finger tapping study participants: random 

heart disease (pace of life) regions: fixed 

Here is another way of fitting a model with ‘random intercepts’ 

#install.packages("lme4") 
library(lme4) 
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modelRE2 = lmer(sessions ~ 1 + group + (1 | classid), data = adultlit) 
summary(modelRE2) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: sessions ~ 1 + group + (1 | classid) 
   Data: adultlit 
 
REML criterion at convergence: 745.2 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-2.521 -0.437  0.171  0.587  1.980  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 classid  (Intercept) 3.74     1.94     
 Residual             6.20     2.49     
Number of obs: 152, groups:  classid, 28 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    5.209      0.590    8.82 
group          1.485      0.842    1.76 
 
Correlation of Fixed Effects: 
      (Intr) 
group -0.701 

(c) What is the syntax for specifying the fixed and random effects? Does this function 
use ML or REML by default? What are the estimated variable components? What is 
missing from the output? Is this a problem? What is unnecessary in the output? 
syntax: (1 | groupid) convey the component 

default: REML 

same estimates but now both variances and standard deviations for variance components and no p-
values for fixed effects (but that’s ok, can use 2 as a cutoff for significant t-tests) 

will soon stop outputting the ‘correlation of fixed effects’ 

There is another nice graph you can use with lmer: 

performance::check_model(modelRE2) #install see package 
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#qqnorm(residuals(modelRE2)) 

(d) What do you learn? 
Model assumptions appear to be met 

Shrinkage Estimation 

Even though we say we are not all that interested in the individual 𝑢𝑢𝑗𝑗 and that they aren’t really 
parameters but “unobservable latent effects,” we do still get estimates for them that are used to 
estimate 𝜏𝜏 and it might still be interesting to explore those estimates (e.g., do they appear to be 
normally distributed?) But how are they estimated differently? 

Example 3: Back to finger tapping 
#The output no longer gives us the estimated effects for the participants, but R do
es store them for us.  
ranef(rm1) 
  (Intercept) 
A      -15.60 
B      -13.76 
C       -3.67 
D       33.03 
#Fitted values, prediction for each participant 
fits=predict(rm1); fits 
    A     A     A     B     B     B     C     C     C     D     D     D  
458.4 458.4 458.4 460.2 460.2 460.2 470.3 470.3 470.3 507.0 507.0 507.0  
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attr(,"label") 
[1] "Fitted values" 
fitted.values(rm1) 
    A     A     A     B     B     B     C     C     C     D     D     D  
458.4 458.4 458.4 460.2 460.2 460.2 470.3 470.3 470.3 507.0 507.0 507.0  
attr(,"label") 
[1] "Fitted values" 
#How do these compare to the participant means? 
tapply(fingertapstudy$Taps, fingertapstudy$participant, mean);  
  A   B   C   D  
457 459 470 510  
tapply(fits, fingertapstudy$participant, mean) 
    A     B     C     D  
458.4 460.2 470.3 507.0  
#Storing these for later 
#library(tidyverse) 
pmeans <- fingertapstudy |> 
  group_by(participant) |> 
  mutate(Tapmean = mean(Taps)) |> 
  ungroup() 
#pmeans 

(a) Why are these called shrinkage estimates? What are they being shrunk towards? 
shrinking towards the grand mean 

Compare to the fixed effect model (with effect coding): 

modelB <- lm(Taps ~ participant, contrasts = list(participant = contr.sum), data = 
fingertapstudy) 
fitted.values(modelB) 
  1   2   3   4   5   6   7   8   9  10  11  12  
457 457 457 459 459 459 470 470 470 510 510 510  

Definitions 
One way to estimate a participant’s effect is to ignore all the other participant, call this no 
pooling. Another way is to ignore the player to player differences and use the overall mean, 
call this complete pooling. Treating the player as a random effect creates partial pooling. We 
can think of each predicted group mean as being a weighted average of the group mean and 
the overall mean: 𝑤𝑤(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) + (1 −𝑤𝑤)(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) where the weight for group 𝑗𝑗, �𝑤𝑤𝑗𝑗�, 
depends on the relative sizes of the variance components and on the group size, 𝑤𝑤𝑗𝑗 =
𝜏𝜏2/�𝜏𝜏2 + 𝜎𝜎2/𝑛𝑛𝑗𝑗� ). The weights reflect the “reliability” of the group. 

(b) Calculate the weight for participant 1? How will it compare to the weight for 
participant 2? 

23.632/(23.632 + 12.272/3) = .9175 

participant 2 is the same because n_j = 3 for each participant 
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(c) Summarize what you learn from the following graph 
ggplot(fingertapstudy, aes(x=participant, y = pmeans$Tapmean, group=participant)) + 
  geom_point(aes(y = Taps), col="grey") + 
  geom_point(aes(y=fits),  col="red") + 
  geom_point(aes(y = pmeans$Tapmean), col="blue") + 
  geom_hline(aes(yintercept = mean(Taps))) + 
  theme_bw() 

 
(d) Which mean appears to change the most and which the least? Why is that? 

participant D just because further away to ybar (estimate of overall mean) participant C just because 
closer to estimate for overall mean 

Example 4: Fake baseball 

Suppose the data in bball.txt are the batting averages for 6 players over several seasons. 
bball <-read.table("http://www.rossmanchance.com/stat414/data/bball.txt",header=T) 
tail(bball) 
      Player Batting 
38 Rodriguez    0.60 
39 Rodriguez    0.50 
40 Rodriguez    0.55 
41    Suarez    0.60 
42    Suarez    0.50 
43    Suarez    0.55 
hist(bball$Batting) 
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load(url("http://www.rossmanchance.com/iscam4/ISCAM.RData")) 
iscamsummary(bball$Batting) 
  Missing  n  Min    Q1 Median  Q3 Max  Mean    SD Skewness 
1       0 43 0.15 0.235  0.325 0.4 0.6 0.344 0.129    0.548 
iscamsummary(bball$Batting, bball$Player) 
          Missing  n  Min    Q1 Median    Q3  Max  Mean    SD Skewness 
Anderson        0  6 0.24 0.285  0.300 0.315 0.33 0.295 0.032   -0.736 
Jones           0 11 0.15 0.190  0.210 0.222 0.24 0.202 0.029   -0.612 
Mitchell        0  6 0.20 0.300  0.320 0.385 0.40 0.323 0.075   -0.511 
Rodriguez       0  6 0.50 0.512  0.550 0.587 0.60 0.550 0.045    0.000 
Smith           0 11 0.30 0.325  0.325 0.400 0.40 0.357 0.042    0.082 
Suarez          0  3 0.50 0.525  0.550 0.575 0.60 0.550 0.050    0.000 

(a) Do you expect a high or low ICC value? Explain. 
group means differ by almost .2 but the group SDs are below .1 so maybe a larger ICC 

(b) Opinion: Do you really think Rodriguez and Suarez are that much better than 
everyone else? What else could be going on? Which averages do you find the 
most/least “trustworthy”? Why? 

means based on small samples sizes are not terribly trustworthy 

#library(nlme) 
model2 = lme(fixed = Batting ~ 1, random = ~ 1 | Player, data = bball) 
summary(model2) 
Linear mixed-effects model fit by REML 
  Data: bball  
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     AIC    BIC logLik 
  -111.1 -105.9  58.55 
 
Random effects: 
 Formula: ~1 | Player 
        (Intercept) Residual 
StdDev:      0.1402  0.04481 
 
Fixed effects:  Batting ~ 1  
             Value Std.Error DF t-value p-value 
(Intercept) 0.3788   0.05772 37   6.564       0 
 
Standardized Within-Group Residuals: 
     Min       Q1      Med       Q3      Max  
-2.77325 -0.71463  0.08025  0.77774  1.69027  
 
Number of Observations: 43 
Number of Groups: 6  
ranef(model2) 
          (Intercept) 
Anderson     -0.08244 
Jones        -0.17495 
Mitchell     -0.05458 
Rodriguez     0.16829 
Smith        -0.02183 
Suarez        0.16552 
#compare the fixed effects 
bball$Player = factor(bball$Player) #I believe default is now alphabetical 
contrasts(bball$Player) <- contr.sum 
summary(model1gls <- gls(Batting ~ Player, data = bball))$coefficients 
(Intercept)     Player1     Player2     Player3     Player4     Player5  
    0.37957    -0.08457    -0.17730    -0.05624     0.17043    -0.02275  

(c) How do these player estimated effects compare to model 1? (You may need to find 
Suarez.) 
The ’effect’s are closer to zero with the random effects model 

We can also convert the effects to the predicted values for each player 

#compare the estimated means 
tapply(model2$fitted[,2], bball$Player, mean) #random 
 Anderson     Jones  Mitchell Rodriguez     Smith    Suarez  
   0.2964    0.2039    0.3243    0.5471    0.3570    0.5444  
tapply(model1gls$fitted,bball$Player, mean) #fixed 
 Anderson     Jones  Mitchell Rodriguez     Smith    Suarez  
   0.2950    0.2023    0.3233    0.5500    0.3568    0.5500  

(d) Whose estimates (Jones or Suarez) changed more? Why does that make sense for 
these data? 
Suarez is a bit more different because was further away from grand mean to beging with 
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(e) Calculate the weights for Jones and Suarez. Why are the weights pretty large? Which 
is larger? Why? 

𝜏̂𝜏 = .140;𝜎𝜎� = .0448 

Jones: . 14017142/(. 14017142 +. 044807762/11) = .9907 

Suarez: . 14017142/(. 14017142 +. 044807762/3) = .967 (more shrinkage because smaller sample 
size) 

(f) Verify the estimated group means for Jones and Suarez using these weights. Which 
changes (from the group mean) more? Why? 

Jones: .9907 x .202 + (1-.9907) x .378847 = .2036 

Suarez: .967 x .550 + (1-.967) x .378847 = .544 

playermeans <- bball |> 
  group_by(Player) |> 
  mutate(Batmean = mean(Batting)) |> 
  ungroup() 
playermeans   
# A tibble: 43 × 3 
   Player Batting Batmean 
   <fct>    <dbl>   <dbl> 
 1 Smith    0.3     0.357 
 2 Smith    0.4     0.357 
 3 Smith    0.325   0.357 
 4 Smith    0.4     0.357 
 5 Smith    0.325   0.357 
 6 Smith    0.4     0.357 
 7 Smith    0.325   0.357 
 8 Smith    0.4     0.357 
 9 Smith    0.325   0.357 
10 Smith    0.4     0.357 
# ℹ 33 more rows 
ggplot(bball, aes(x=Player, y = playermeans$Batmean, group=Player)) + 
  geom_point(aes(y = Batting), col="grey") + 
  geom_point(aes(y=predict(model2)),  col="red") + 
  geom_point(aes(y = playermeans$Batmean), col="blue") + 
  theme_bw() 
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Notes 
• Degree of shrinkage depends on the variance of the effect (𝜏𝜏) and the number of 

observations per level in the effect. With large variance estimates, there is little shrinkage. 
– You can consider fixed effects as a special case of random effects where the 

variance component is very large. 
– If variance component is small, then more shrinkage. 

• If the variance component is zero, the effect levels are shrunk to exactly zero. It is even 
possible to obtain highly negative variance components where the shrinkage is reversed. 

– If very few observations per level, then more shrinkage. 
– If many observations per level, the estimates shrink less. 
– You can consider fixed effects as a special case with infinitely many observations. 
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