Fall, 2025 Wednesday, Oct. 15

Stat 414 - Day 8

Fixed vs. Random Effects

Last Time

+ |CC is a way of measuring how similar observations are within the same group of a
categorical variable.

+  One way to model correlated errors is using generalized least squares and specifying
specific correlation patterns to be estimated/

ifj=1

COTT(E” ) = cﬁfh];:wise
€11 €21 €31 €12 €22 €23 €31 €32 €33
€11 1 p p 0 0 0 0 0 0
€91 p 1 p 0 0 0 0 0 0
€31 p p 1 0 0 0 0 0 0
€12 0 0 0 1 p p 0 0 0
€55 0 0 0 p 1 p 0 0 0
€23 0 0 0 p p 1 0 0 0
€31 0 0 0 0 0 0 1 p p
€39 0 0 0 0 0 0 p 1 p
€33 0 0 0 0 0 0 p p 1

correlation matrix

*  Accounting for the correlation will impact the effective sample size

» Expect SE(y) to increase (by 1 + (n — 1)p)

»  SE(p;) usually increases as well, especially if x; mostly varies between clusters.

+ If you have an important categorical variable, especially if you used randomized block
design or cluster sampling, then that variable must be included in your model.

* Is possible this will also account for the correlated observations (e.g., within a region,
heart disease rates from different cities are essentially independent)

*  When adding a categorical variable to the model, we have the choice of treating that
variable as a fixed effect (what we have been doing) or as a random effect.

Reminder:
«  When variables are centered, interpret the intercept at the average value of the predictor
variable(s).

Random effects models

Model equation: Y;; = B, + u; + €;; where u; ~ N(0,7%) and ¢;; ~ N(0,02). We also assume
cov(uj,eij) = 0.

Consequences

V() =V(Bo) +V(w) +V(e;;) =12 + o2
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Cov(Yi]-, ij) = Cov(uj +€;5,u; + ekj) = Cov(uj,uj) + Cov(uj, ek]-) + Cov(uj,ei]-) + Cov(ei]-, ekj)
= Cov(uj,uj) + Cov(eij, ekj) =12

Example 1: Finger tapping
fingertapstudy = read.table("http://www.isi-stats.com/isi2/data/Fingertap.txt","\t"
, header=TRUE)

#install.packages("nlme")

library(nlme)

rml = lme(fixed = Taps ~ 1 , random = ~1 | participant, data = fingertapstudy, meth
od="REML")

summary(rml)
Linear mixed-effects model fit by REML
Data: fingertapstudy
AIC BIC loglLik
102.3 103.5 -48.17

Random effects:
Formula: ~1 | participant
(Intercept) Residual
StdDev: 23.63 12.27

Fixed effects: Taps ~ 1
Value Std.Error DF t-value p-value
(Intercept) 474 12.34 8 38.43 0

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.2496 -0.7895 ©0.1400 0.5698 1.3015

Number of Observations: 12
Number of Groups: 4
logLik(rml)

"log Lik.' -48.17 (df=3)

(a) How many parameters are estimated in this model? What are they?
3 parameters: intercept, tau, sigma

(b) What are the estimated variance components?

T = 23.63 (between group variability)
0 =12.127 (within group variability)

(c) What is the estimated total variance in the response using this model?
23.63% +12.27% =709
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(d) What is the variance-covariance matrix of the responses?

getVarCov(rml, subject = "1", type = "marginal”)[[1]]
1 2 3

1 709.0 558.5 558.5

2 558.5 709.0 558.5

3 558.5 558.5 709.0

cov2cor(getVarCov(rml, subject = "1", type = "marginal")[[1]])
1 2 3

1 1.0000 0.7877 0.7877

2 0.7877 1.0000 0.7877

3 0.7877 0.7877 1.0000

Here, marginal means we are looking at the y-values rather than the errors.
#what does this give you?
getVarCov(rml, type = "conditional")
participant A
Conditional variance covariance matrix
1 2 3
5 0.0 0.0
0 150.5 0.0
0.0 0.0 150.5
Standard Deviations: 12.27 12.27 12.27
These are the 62 values (within group)

1 150.
2 0.
3

(d) How much of the (estimated) total variation is due to the groups?
t2/(t% + 62)
This number should look familiar:

#install.packages("performance")
library(performance)
performance(rml)

# Indices of model performance

AIC | AICc | BIC | R2 (cond.) | R2 (marg.) | ICC | RMSE | Sigma
102.3 | 105.3 | 103.8 | 0.788 | 0 | 0.788 | 10.170 | 12.268
icc(rml)

# Intraclass Correlation Coefficient

Adjusted ICC: ©.788
Unadjusted ICC: 0.788

(e) Are they any additional model assumptions to worry about?

Have the usual linearity and equal variability and now normality of both “epsilons” and “uj”
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Key ldeas

* Random effects models account for both group to group variation and intraclass
correlation at once.

«  They are much more robust to issues like unequal group sizes, missing observations.

+ Can show they often have better predictive performance than fixed effects models (see
HW 4).

*  You can think of the u; as “level 2 residuals”

Example 2: Adult literacy

Recall the study on adult literacy from HW 3.

adultlit <- read.table("https://www.rossmanchance.com/stat414/data/adultlit.txt", h
eader=TRUE)

modell <- lm(sessions ~ group, data

adultlit); summary(modell)

Call:
Im(formula = sessions ~ group, data = adultlit)
Residuals:

Min 1Q Median 3Q Max
-6.686 -1.686 ©0.314 2.314 8.314
Coefficients:

Estimate Std. Error t value Pr(>|t]|)

(Intercept) 5.280 0.342 15.45 <2e-16 ***
group 1.405 0.504 2.79 0.006 **
Signif. codes: © '***' 9,001 '**' ©.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 3.1 on 150 degrees of freedom
Multiple R-squared: ©.0493, Adjusted R-squared: 0.043
F-statistic: 7.78 on 1 and 150 DF, p-value: 0.00597

Treatments were randomly assigned to classes, so it's important that we acknowledge this in
the analysis. We could scale the standard errors using effective sample size. This gave us a
SE for the treatment variable of about 0.8 rather than 0.5 so the treatment variable was no
longer significant.

Alternatively, we can include the class variable in the model. Doing so as fixed effects had
some issues (see HW 3), mostly due to unequal sample sizes and small sample sizes (e.g.,
class 361 had only 2 students).

table(adultlit$classid)

57 58 84 85 86 92 114 115 116 175 176 177 178 192 242 293 361 362 401 421

7 8 9 7 4 5 4 6 5 7 6 7 5 6 6 3 2 7 6 5
422 441 451 452 471 481 491 541

5 5 5 5 4 4 4 5
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But we can easily fit the model treating the classid as random effects.
modelRE = lme(fixed = sessions ~ 1 + group, random = ~1 | classid, data = adultlit)
summary (modelRE)
Linear mixed-effects model fit by REML
Data: adultlit
AIC BIC loglik
753.2 765.2 -372.6

Random effects:
Formula: ~1 | classid
(Intercept) Residual
StdDev: 1.935 2.491

Fixed effects: sessions ~ 1 + group
Value Std.Error DF t-value p-value
(Intercept) 5.209 0.5904 124 8.823 0.0000
group 1.485 0.8422 26 1.763 0.0896
Correlation:
(Intr)
group -0.701

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.5208 -0.4369 ©0.1710 0.5866 1.9801

Number of Observations: 152
Number of Groups: 28

(a) What is the SE of the group variable in this model?
.84, very similar to the .8 you got in the homework by tweaking based on effective sample size

(b) Does it make sense to treat the classid as random effects in this study?
Random vs. Fixed Effects

» do you care about that factor (e.g., don’t necessarily want to compare the participants to
each other, but do want to compare the treatments to each other)

» isitreasonable to consider the “level 2” units as a random sample or was that an intention
feature of the study design? If so, RE will allow you to generalize from the units in your
study to the population of units

classid in adult literacy study: random

Finger tapping study participants: random

heart disease (pace of life) regions: fixed

Here is another way of fitting a model with ‘random intercepts’

#install.packages("Lme4")
library(1lme4)
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modelRE2 = lmer(sessions ~ 1 + group + (1 | classid), data = adultlit)
summary(modelRE2)
Linear mixed model fit by REML ['lmerMod']
Formula: sessions ~ 1 + group + (1 | classid)
Data: adultlit

REML criterion at convergence: 745.2
Scaled residuals:

Min 1Q Median 3Q Max
-2.521 -0.437 ©0.171 0.587 1.980

Random effects:

Groups  Name Variance Std.Dev.
classid (Intercept) 3.74 1.94
Residual 6.20 2.49

Number of obs: 152, groups: classid, 28

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.209 0.590 8.82
group 1.485 0.842 1.76
Correlation of Fixed Effects:

(Intr)
group -0.701

(c) What is the syntax for specifying the fixed and random effects? Does this function
use ML or REML by default? What are the estimated variable components? What is
missing from the output? Is this a problem? What is unnecessary in the output?
syntax: (1 | groupid) convey the component

default: REML

same estimates but now both variances and standard deviations for variance components and no p-
values for fixed effects (but that’s ok, can use 2 as a cutoff for significant t-tests)

will soon stop outputting the ‘correlation of fixed effects’

There is another nice graph you can use with Imer:

performance: :check_model(modelRE2) #install see package
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#qqnorm(residuals(modelRE2))

(d) What do you learn?
Model assumptions appear to be met

Shrinkage Estimation

Wednesday, Oct. 15

Even though we say we are not all that interested in the individual u; and that they aren’t really
parameters but “unobservable latent effects,” we do still get estimates for them that are used to
estimate t and it might still be interesting to explore those estimates (e.g., do they appear to be

normally distributed?) But how are they estimated differently?

Example 3: Back to finger tapping

#The output no lLonger gives us the estimated effects for the participants, but R do

es store them for us.

ranef(rml)
(Intercept)
A -15.60
B -13.76
C -3.67
D 33.03

#Fitted values, prediction for each participant
fits=predict(rml); fits
A A A B B B C C C D

D

458.4 458.4 458.4 460.2 460.2 460.2 470.3 470.3 470.3 507.0 507.0 507.0



Fall, 2025 Wednesday, Oct. 15

attr(,"label™)
[1] "Fitted values™
fitted.values(rml)

A A A B B B C C C D D D
458.4 458.4 458.4 460.2 460.2 460.2 470.3 470.3 470.3 507.0 507.0 507.0
attr(,"label")

[1] "Fitted values™

#How do these compare to the participant means?

tapply(fingertapstudy$Taps, fingertapstudy$participant, mean);
A B C D

457 459 470 510

tapply(fits, fingertapstudy$participant, mean)

A B C D
458.4 460.2 470.3 507.0
#Storing these for Llater
#Llibrary(tidyverse)
pmeans <- fingertapstudy |>

group_by(participant) |>
mutate(Tapmean = mean(Taps)) |>

ungroup()
#pmeans

(a) Why are these called shrinkage estimates? What are they being shrunk towards?
shrinking towards the grand mean

Compare to the fixed effect model (with effect coding):

modelB <- 1lm(Taps ~ participant, contrasts = list(participant = contr.sum), data =
fingertapstudy)
fitted.values(modelB)
1 2 3 4 5 6 7 8 9 106 11 12
457 457 457 459 459 459 470 470 470 510 510 510

Definitions

One way to estimate a participant’s effect is to ignore all the other participant, call this no
pooling. Another way is to ignore the player to player differences and use the overall mean,
call this complete pooling. Treating the player as a random effect creates partial pooling. We
can think of each predicted group mean as being a weighted average of the group mean and
the overall mean: w(group mean) + (1 — w)(overall mean) where the weight for group j, (w;),
depends on the relative sizes of the variance components and on the group size, w; =

72/(x% + 0% /n;) ). The weights reflect the “reliability” of the group.

(b) Calculate the weight for participant 1? How will it compare to the weight for
participant 2?

23.632/(23.632 + 12.27%/3) = .9175

participant 2 is the same because n_j = 3 for each participant
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(c) Summarize what you learn from the following graph
ggplot(fingertapstudy, aes(x=participant, y = pmeans$Tapmean, group=participant)) +
geom _point(aes(y = Taps), col="grey") +

geom _point(aes(y=Ffits),

col="red") +

geom_point(aes(y = pmeans$Tapmean), col="blue") +
geom_hline(aes(yintercept = mean(Taps))) +

theme_bw()
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(d) Which mean appears to change the most and which the least? Why is that?

participant D just because further away to ybar (estimate of overall mean) participant C just because
closer to estimate for overall mean

Example 4: Fake baseball

Suppose the data in bball.txt are the batting averages for 6 players over several seasons.
bball <-read.table("http://www.rossmanchance.com/stat414/data/bball.txt",header=T)

tail(bball)

Player Batting

38 Rodriguez
39 Rodriguez
40 Rodriguez

41 Suarez
42 Suarez
43 Suarez

Q.
.50
.55
.60
.50
Q.

(ORI

60

55

hist(bball$Batting)
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Histogram of bball$Batting

Frequency
4
|

| | | | |
0.2 0.3 0.4 0.9 0.6

bball$Batting

load(url("http://www.rossmanchance.com/iscam4/ISCAM.RData"))
iscamsummary(bball$Batting)
Missing n Min Q1 Median Q3 Max Mean SD Skewness
1 0 43 0.15 0.235 0.325 0.4 0.6 0.344 0.129 0.548
iscamsummary(bball$Batting, bball$Player)
Missing n Min Q1 Median Q3 Max Mean SD Skewness

Anderson 0 6 0.24 0.285 ©0.300 0.315 0.33 0.295 0.032 -0.736
Jones 0 11 0.15 0.190 0.210 0.222 0.24 0.202 0.029 -0.612
Mitchell O 6 0.20 0.300 0©.320 0.385 0.40 0.323 0.075 -0.511
Rodriguez 0 6 0.50 0.512 0.550 0.587 0.60 0.550 0.045 0.000
Smith 0 11 0.30 0.325 ©0.325 0.400 0.40 0.357 0.042 0.082
Suarez 0 3 0.50 0.525 0.550 0.575 0.60 0.550 0.050 0.000

(a) Do you expect a high or low ICC value? Explain.
group means differ by almost .2 but the group SDs are below .1 so maybe a larger ICC

(b) Opinion: Do you really think Rodriguez and Suarez are that much better than
everyone else? What else could be going on? Which averages do you find the
most/least “trustworthy”? Why?

means based on small samples sizes are not terribly trustworthy

#Library(nlme)
model2 = lme(fixed = Batting ~ 1, random = ~ 1 | Player, data = bball)
summary (model2)
Linear mixed-effects model fit by REML
Data: bball
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AIC BIC loglLik
-111.1 -105.9 58.55

Random effects:
Formula: ~1 | Player
(Intercept) Residual
StdDev: 0.1402 0.04481

Fixed effects: Batting ~ 1
Value Std.Error DF t-value p-value
(Intercept) ©.3788 ©0.05772 37 6.564 0

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.77325 -0.71463 0.08025 0.77774 1.69027

Number of Observations: 43
Number of Groups: 6

ranef(model2)
(Intercept)
Anderson -0.08244
Jones -0.17495
Mitchell -0.05458
Rodriguez 0.16829
Smith -0.02183
Suarez 0.16552

#compare the fixed effects

bball¢$Player = factor(bball$Player) #I believe default is now alphabetical

contrasts(bball$Player) <- contr.sum

summary(modellgls <- gls(Batting ~ Player, data = bball))$coefficients

(Intercept) Playerl Player2 Player3 Player4 Player5
0.37957 -0.08457 -0.17730 -0.05624 0.17043 -0.02275

(c) How do these player estimated effects compare to model 1? (You may need to find
Suarez.)
The ’effect’s are closer to zero with the random effects model

We can also convert the effects to the predicted values for each player

#compare the estimated means
tapply(model2$fitted[,2], bball$Player, mean) #random
Anderson Jones Mitchell Rodriguez Smith Suarez
0.2964 0.2039 0.3243 0.5471 0.3570 0.5444
tapply(modellgls$fitted,bball$Player, mean) #fixed
Anderson Jones Mitchell Rodriguez Smith Suarez
0.2950 0.2023 0.3233 0.5500 0.3568 0.5500

(d) Whose estimates (Jones or Suarez) changed more? Why does that make sense for
these data?
Suarez is a bit more different because was further away from grand mean to beging with



Fall, 2025 Wednesday, Oct. 15

(e) Calculate the weights for Jones and Suarez. Why are the weights pretty large? Which
is larger? Why?

7 =.140;6 = .0448
Jones:. 14017142 /(. 14017142 +.04480776%/11) = .9907

Suarez:.14017142/(.14017142 +.04480776%/3) = .967 (more shrinkage because smaller sample
size)

(f) Verify the estimated group means for Jones and Suarez using these weights. Which
changes (from the group mean) more? Why?

Jones: .9907 x .202 + (1-.9907) x .378847 = .2036
Suarez: .967 x .550 + (1-.967) x .378847 = .544

playermeans <- bball |>
group_by(Player) |>
mutate(Batmean = mean(Batting)) |>
ungroup()
playermeans
# A tibble: 43 x 3
Player Batting Batmean
<fct> <dbl>  <dbl>

1 Smith 0.3 0.357
2 Smith 0.4 0.357
3 Smith 0.325 0.357
4 Smith 0.4 0.357
5 Smith 0.325 0.357
6 Smith 0.4 0.357
7 Smith 0.325 0.357
8 Smith 0.4 0.357
9 Smith 0.325 0.357
10 Smith 0.4 0.357

# 1 33 more rows
ggplot(bball, aes(x=Player, y = playermeans$Batmean, group=Player)) +
geom_point(aes(y = Batting), col="grey") +
geom _point(aes(y=predict(model2)), col="red") +
geom_point(aes(y = playermeans$Batmean), col="blue") +
theme_bw()



Fall, 2025 Wednesday, Oct. 15

Anderson Jones Mitchell Fodriguez Smith Suarez

Player

Notes
+ Degree of shrinkage depends on the variance of the effect (r) and the number of
observations per level in the effect. With large variance estimates, there is little shrinkage.
— You can consider fixed effects as a special case of random effects where the
variance component is very large.
— If variance component is small, then more shrinkage.
« If the variance component is zero, the effect levels are shrunk to exactly zero. It is even
possible to obtain highly negative variance components where the shrinkage is reversed.
— If very few observations per level, then more shrinkage.
— If many observations per level, the estimates shrink less.
— You can consider fixed effects as a special case with infinitely many observations.
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