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Stat 414 - Day 7 
Correlated Observations 

Last Time 
• We often focus on fitting a linear model to predict the mean response depending on 

predictor variables. After adjusting for those “fixed effects,” there is often a lot of 
information in the residuals, e.g., what patterns are still left unexplained. Perhaps there is 
an important variable missing from our model. Perhaps there are “variance covariates” 
that can explain variation in the variation of the residuals (“heterogeneity”). Perhaps we 
are most interested in adjusting the standard errors of the regression coefficients to 
improve the appropriateness of our p-values and confidence intervals. 

• Multiple regression models work beautifully for both randomized experiments and 
observational studies. Randomized experiments are often designed to have 
“orthogonality” among the predictors so they explain distinct sources of variation in the 
response. With observational studies on the other hand, we often have to deal with the 
“overlap” of variation explain by the different predictors (e.g., multicollinearity, sequential 
vs. adjusted tests). In particular, we must always recognize that slope coefficients are 
“adjusted for” other variables in the model. 

• Don’t forget to consider visualizations (e.g., added-variable plots) as a tool for explaining 
your model. 

• ICC can also be interpreted as the amount of correlation in pairs of observations within the 
same group. Keep in mind how you would manually calculate this number (e.g., find all 
possible pairs, how correlated are the two sets of responses) and that this is different from 
the correlation coefficient of two variables. 

• Also keep in mind the distinction between the variance-covariance matrix of the parameter 
estimates (e.g., 𝑉𝑉�𝛽̂𝛽� and and the variance-covariance matrix of the residuals 𝑉𝑉(𝜖𝜖𝑖𝑖) which 
impacts the variance-covariance matrix of the responses 𝑉𝑉(𝑌𝑌𝑖𝑖). Initially, we assumed 
𝑉𝑉(𝜖𝜖𝑖𝑖) = 𝜎𝜎2𝐼𝐼 and then we looked at ways to allow those diagonal elements to not all be the 
same (e.g., gls). Next we will focus on the off-diagonal elements. 

Example 1: Finger Tapping Study 

Caffeine is widely used as a stimulant – but are there other ways to get the same effects, with 
little to no downside? To begin to answer this question, a study compared the effects of 
caffeine with theobromine, which is the active chemical naturally found in chocolate and is an 
alkaloid with a similar molecular structure and effects on people as caffeine (Scott & Chen, 
1944, “Comparison of Action of 1-Ethyl Theobromine and Caffeine in Animals and Man,” the 
Journal of Pharmacology and Experimental Therapeutics). To measure the effects of these two 
different chemicals, the researchers trained subjects to tap their fingers in such a way that the 
rate could be measured. After learning/practicing this type of finger tapping, participants took 
either took a caffeine pill (200 mg), a theobromine pill (200 mg), or a placebo, and then their 
finger tapping rate was measured two hours later. 
fingertapstudy = read.table("http://www.isi-stats.com/isi2/data/Fingertap.txt","\t"
, header=TRUE) 
attach(fingertapstudy)  #this is an optional and sometimes looked-down-upon method 
for letting R know which data file you are using so you don't have to use the data 

https://linkinghub.elsevier.com/retrieve/pii/S0022356525085775
https://linkinghub.elsevier.com/retrieve/pii/S0022356525085775
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file name every time 
summary(fingertapstudy) 
      Taps      Stimulant         participant        
 Min.   :446   Length:12          Length:12          
 1st Qu.:454   Class :character   Class :character   
 Median :469   Mode  :character   Mode  :character   
 Mean   :474                                         
 3rd Qu.:485                                         
 Max.   :523                                         
var(Taps) 
[1] 607.5 
#We will use maximum likelihood estimation today (REML) 
#install.packages("nlme") 
library(nlme) 
summary(model0 <- gls(Taps ~ 1)) 
Generalized least squares fit by REML 
  Model: Taps ~ 1  
  Data: NULL  
    AIC BIC logLik 
  108.2 109  -52.1 
 
Coefficients: 
            Value Std.Error t-value p-value 
(Intercept)   474     7.115   66.62       0 
 
Standardized residuals: 
    Min      Q1     Med      Q3     Max  
-1.1361 -0.7912 -0.2029  0.4362  1.9881  
 
Residual standard error: 24.65  
Degrees of freedom: 12 total; 11 residual 
#variance-covariance matrix of the residuals 
#install.packages("nlraa") 
vcmatrix0 = nlraa::var_cov(model0); vcmatrix0[1:5, 1:5] 
      [,1]  [,2]  [,3]  [,4]  [,5] 
[1,] 607.5   0.0   0.0   0.0   0.0 
[2,]   0.0 607.5   0.0   0.0   0.0 
[3,]   0.0   0.0 607.5   0.0   0.0 
[4,]   0.0   0.0   0.0 607.5   0.0 
[5,]   0.0   0.0   0.0   0.0 607.5 

To make some math easier, I want to use effect-coding for the categorical variables today. We 
can change the coding from the get go: 
# Set the contrast for the factor 'group' 
participantF = as.factor(participant) 
contrasts(participantF) <- "contr.sum" 
contrasts(participantF) 
  [,1] [,2] [,3] 
A    1    0    0 
B    0    1    0 
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C    0    0    1 
D   -1   -1   -1 
StimulantF = as.factor(Stimulant) 
contrasts(StimulantF) <- "contr.sum" 
contrasts(StimulantF) 
            [,1] [,2] 
Caffeine       1    0 
Placebo        0    1 
Theobromine   -1   -1 

Consider a one-way ANOVA on the stimulants: 
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))  
iscamsummary(Taps, StimulantF) 
            Missing n Min    Q1 Median    Q3 Max Mean    SD Skewness 
Caffeine          0 4 453 462.8  470.0 486.2 523  479 30.58    0.878 
Placebo           0 4 446 449.8  453.0 465.2 496  462 22.96    1.066 
Theobromine       0 4 460 469.0  476.5 488.5 511  481 21.77    0.634 
iscamboxplot(Taps, StimulantF) 

 
summary(aov(Taps ~ StimulantF)) 
            Df Sum Sq Mean Sq F value Pr(>F) 
StimulantF   2    872     436    0.68   0.53 
Residuals    9   5810     646                
summary(modelA <- gls(Taps ~ StimulantF)) 
Generalized least squares fit by REML 
  Model: Taps ~ StimulantF  
  Data: NULL  
    AIC   BIC logLik 
  98.13 98.92 -45.06 
 
Coefficients: 
            Value Std.Error t-value p-value 
(Intercept)   474     7.335   64.63  0.0000 
StimulantF1     5    10.373    0.48  0.6413 
StimulantF2   -12    10.373   -1.16  0.2771 
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 Correlation:  
            (Intr) StmlF1 
StimulantF1  0.0          
StimulantF2  0.0   -0.5   
 
Standardized residuals: 
    Min      Q1     Med      Q3     Max  
-1.0233 -0.5412 -0.3149  0.2952  1.7318  
 
Residual standard error: 25.41  
Degrees of freedom: 12 total; 9 residual 
vcmatrixa = nlraa::var_cov(modelA); vcmatrixa[1:5, 1:5] 
      [,1]  [,2]  [,3]  [,4]  [,5] 
[1,] 645.6   0.0   0.0   0.0   0.0 
[2,]   0.0 645.6   0.0   0.0   0.0 
[3,]   0.0   0.0 645.6   0.0   0.0 
[4,]   0.0   0.0   0.0 645.6   0.0 
[5,]   0.0   0.0   0.0   0.0 645.6 

Formulas 
With effect coding and equal group sizes (𝑁𝑁 = 𝐺𝐺𝐺𝐺), the standard deviation of the intercept is 
𝑆𝑆𝑆𝑆(𝑦𝑦‾) = 𝜎𝜎/√𝑁𝑁 and the standard deviation of the slope coefficients is 𝜎𝜎 × �(𝐺𝐺 − 1)/𝑁𝑁 where 𝐺𝐺 
is the number of groups. 

(a) What is the intercept? Why? What is its standard error? What about the treatment 
coefficients? Is the difference among the stimulants statistically significant? (Be clear 
how you are deciding.) The researcher insists there is a mistake because they know 
there is a difference among these treatments; how would you respond? 

The intercept is ybar (balanced design, effect coding) with se 25.41/sqrt(12) and, with effect coding, 
the treatment coefficient SEs are 25.41*sqrt(G-1/N) = 10.373 where G = number of treatments and N is 
overall sample size. The difference between the stimulants is not statistically significant, because the 
remaining unexplained variability is still quite large. We have a small sample size in this study and 
therefore low power. 

Consider a one-way ANOVA on the participants. 

#using effect coding 
summary(modelB <- gls(Taps ~ participantF)) 
Generalized least squares fit by REML 
  Model: Taps ~ participantF  
  Data: NULL  
    AIC   BIC logLik 
  79.98 80.38 -34.99 
 
Coefficients: 
              Value Std.Error t-value p-value 
(Intercept)     474     3.541  133.84  0.0000 
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participantF1   -17     6.134   -2.77  0.0242 
participantF2   -15     6.134   -2.45  0.0402 
participantF3    -4     6.134   -0.65  0.5326 
 
 Correlation:  
              (Intr) prtcF1 prtcF2 
participantF1  0.000               
participantF2  0.000 -0.333        
participantF3  0.000 -0.333 -0.333 
 
Standardized residuals: 
     Min       Q1      Med       Q3      Max  
-1.22271 -0.71325  0.08151  0.65211  1.22271  
 
Residual standard error: 12.27  
Degrees of freedom: 12 total; 8 residual 
vcmatrixb = nlraa::var_cov(modelB); vcmatrixb[1:5, 1:5] 
      [,1]  [,2]  [,3]  [,4]  [,5] 
[1,] 150.5   0.0   0.0   0.0   0.0 
[2,]   0.0 150.5   0.0   0.0   0.0 
[3,]   0.0   0.0 150.5   0.0   0.0 
[4,]   0.0   0.0   0.0 150.5   0.0 
[5,]   0.0   0.0   0.0   0.0 150.5 

(b) What is the estimated intercept? Why? What is its standard error? Is there 
statistically significant person to person variation? Why might this be relevant to our 
real research question comparing the treatments? 
with effect coding, intercept still estimate overall mean 12.268/sqrt(12) = 3.541. The p-value for testing 
the equality of all the participants’ means = .0024 so yes, significant person to person variation in 
finger tapping rates. RCBD will allow a more direct comparison of the finger tap rates across 
treatments within each participant… 

(c) Include the participant variable in the model. How should this change the ANOVA 
table? 

will separate out the SS participants out of SSError but don’t expect the coefficients of the treatments 
to change because of orthogonality in the RCBD (equal cell sizes). 

summary(modelC <- gls(Taps ~ StimulantF + participantF, data = fingertapstudy)) 
Generalized least squares fit by REML 
  Model: Taps ~ StimulantF + participantF  
  Data: fingertapstudy  
    AIC   BIC logLik 
  66.15 64.69 -26.07 
 
Coefficients: 
              Value Std.Error t-value p-value 
(Intercept)     474     2.147  220.74  0.0000 
StimulantF1       5     3.037    1.65  0.1508 
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StimulantF2     -12     3.037   -3.95  0.0075 
participantF1   -17     3.719   -4.57  0.0038 
participantF2   -15     3.719   -4.03  0.0069 
participantF3    -4     3.719   -1.08  0.3235 
 
 Correlation:  
              (Intr) StmlF1 StmlF2 prtcF1 prtcF2 
StimulantF1    0.000                             
StimulantF2    0.000 -0.500                      
participantF1  0.000  0.000  0.000               
participantF2  0.000  0.000  0.000 -0.333        
participantF3  0.000  0.000  0.000 -0.333 -0.333 
 
Standardized residuals: 
       Min         Q1        Med         Q3        Max  
-1.210e+00 -5.041e-01 -4.202e-14  5.377e-01  1.075e+00  
 
Residual standard error: 7.439  
Degrees of freedom: 12 total; 6 residual 
anova(modelC) 
Denom. DF: 6  
             numDF F-value p-value 
(Intercept)      1   48725  <.0001 
StimulantF       2       8  0.0210 
participantF     3      33  0.0004 
vcmatrixc = nlraa::var_cov(modelC); vcmatrixc[1:5, 1:5] 
      [,1]  [,2]  [,3]  [,4]  [,5] 
[1,] 55.33  0.00  0.00  0.00  0.00 
[2,]  0.00 55.33  0.00  0.00  0.00 
[3,]  0.00  0.00 55.33  0.00  0.00 
[4,]  0.00  0.00  0.00 55.33  0.00 
[5,]  0.00  0.00  0.00  0.00 55.33 

(d) Is the treatment variable now statistically significant? Why? How would you interpret 
the coefficient of placebo? What are the standard errors of the placebo and 
theobromine coefficients? 
Yes, after adjusting for participants, p-value for Stimulant is .021 < .05. The standard errors of the 
coefficients are smaller. The coefficient of the placebo is how much lower the placebo treatment is 
from the overall mean on average (ybar_placebo vs. ybar). SE for a participant coefficient is 7.439 and 
for treatment is 7.439 and for intercept is 7.439/. 

We note that each subject participated in all 3 treatments, in random order, giving us a 
randomized block design. 

(e) Is it reasonable to consider the observations in this study independent from each 
other? What should the variance-covariance matrix of the residuals look like? 

We expect observations within the same person to be correlated, but uncorrelated with other 
individuals. This will give us a ‘block diagonal’ variance-covariance matrix. 
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Calculate and interpret the intraclass correlation for the subjects in the stimulant study. 

#install.packages("ICC") 
ICC::ICCbare(y = Taps, x = participantF) 
[1] 0.7877 
There is a strong correlation (.79) between the finger tapping rates with repeated observations on the 
same individual. 

(f) Does this amount of correlation seem ’meaningful? How does this compare to the 
intraclass correlation coefficient we found with the Pace of Life study? Does that make 
sense in context? Explain. 

This is larger than what we saw before. We expect repeat observations on the same individual to be 
more highly correlated that observations on different individuals living in the same city. 

So let’s use generalized least squares model to model the intraclass correlation of repeat 
observations on the same individual. 

So we are now changing the assumptions of the basic regression model. 

𝑐𝑐𝑐𝑐𝑐𝑐�𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑖𝑖′𝑗𝑗� = 𝜌𝜌 ≠ 0 

The following model assumes “compound symmetry” (equal variances, equal covariances). 

Let’s first just look at the participants variable. 

#install.packages("nlme") 
modelD <- nlme::gls(Taps ~ 1,  
        corr = corCompSymm(form = ~1 | participantF)) 
summary(modelD) 
Generalized least squares fit by REML 
  Model: Taps ~ 1  
  Data: NULL  
    AIC   BIC logLik 
  102.3 103.5 -48.17 
 
Correlation Structure: Compound symmetry 
 Formula: ~1 | participantF  
 Parameter estimate(s): 
   Rho  
0.7877  
 
Coefficients: 
            Value Std.Error t-value p-value 
(Intercept)   474     12.34   38.43       0 
 
Standardized residuals: 
    Min      Q1     Med      Q3     Max  
-1.0516 -0.7323 -0.1878  0.4037  1.8402  
 



Fall, 2025  Monday, Oct. 13 

Residual standard error: 26.63  
Degrees of freedom: 12 total; 11 residual 
anova(modelD) 
Denom. DF: 11  
            numDF F-value p-value 
(Intercept)     1    1476  <.0001 
#For comparison 
#summary(model0 <- gls(Taps ~ 1)) 
#anova(model0, modelD) 

(g) What is the estimated correlation coefficient? Does it look familiar? Is it statistically 
significant? What is the residual standard error? How has the standard error for the 
intercept changed (from model0)? Why? How would you explain this? 
‘Rho’ is estimated to be 0.78772. The estimated intercept is still 𝑦𝑦‾ with SE 12.33 The variance-
covariance matrix has that block diagonal pattern. The residual standard error is 26.63. The standard 
error of the itnercept has increased because it now reflects the smaller ‘effective sample size’ from the 
correlated observations. 𝜎𝜎/√𝑁𝑁 × �1 + (1 − 𝐼𝐼𝐼𝐼𝐼𝐼) × 𝑁𝑁. If we compare the model with and without 
‘rho’ the ‘full model’ is significantly better from the likelihood ratio test (𝐻𝐻0:𝜌𝜌 = 0 vs. 𝐻𝐻𝑎𝑎:𝜌𝜌 ≠ 0, df = 1, 
p-value = .0051). 

What does our variance-covariance matrix look like? 

Detour 
• 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)/[𝑆𝑆𝑆𝑆(𝑋𝑋)𝑆𝑆𝑆𝑆(𝑌𝑌)] 
#Note, this doesn't work for the intercept only model 
#vcmatrixd = nlraa::var_cov(modelD); vcmatrixd[1:5, 1:5] 
 
#So we will use this instead 
getVarCov(modelD, individual = 1) 
Marginal variance covariance matrix 
      [,1]  [,2]  [,3] 
[1,] 709.0 558.5 558.5 
[2,] 558.5 709.0 558.5 
[3,] 558.5 558.5 709.0 
  Standard Deviations: 26.63 26.63 26.63  

(g2) What are we considering to be X and Y here? What are our estimates of X and Y? 
What is the estimated covariance? 
X and Y represent two different observations on the same person so use 𝜎𝜎� = 26.63, so covariance = 
.7877 x 26.63 x 26.63 = 558.6 

So let’s add this correlation structure to our earlier model: 

modelE <- nlme::gls(Taps ~ 1 + StimulantF + participantF,  
          corr = corCompSymm(form = ~1 | participantF)) 
summary(modelE) 
Generalized least squares fit by REML 
  Model: Taps ~ 1 + StimulantF + participantF  
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  Data: NULL  
    AIC   BIC logLik 
  68.15 66.48 -26.07 
 
Correlation Structure: Compound symmetry 
 Formula: ~1 | participantF  
 Parameter estimate(s): 
Rho  
  0  
 
Coefficients: 
              Value Std.Error t-value p-value 
(Intercept)     474     2.147  220.74  0.0000 
StimulantF1       5     3.037    1.65  0.1508 
StimulantF2     -12     3.037   -3.95  0.0075 
participantF1   -17     3.719   -4.57  0.0038 
participantF2   -15     3.719   -4.03  0.0069 
participantF3    -4     3.719   -1.08  0.3235 
 
 Correlation:  
              (Intr) StmlF1 StmlF2 prtcF1 prtcF2 
StimulantF1    0.000                             
StimulantF2    0.000 -0.500                      
participantF1  0.000  0.000  0.000               
participantF2  0.000  0.000  0.000 -0.333        
participantF3  0.000  0.000  0.000 -0.333 -0.333 
 
Standardized residuals: 
       Min         Q1        Med         Q3        Max  
-1.210e+00 -5.041e-01 -7.633e-15  5.377e-01  1.075e+00  
 
Residual standard error: 7.439  
Degrees of freedom: 12 total; 6 residual 

(h) Has anything changed (vs. model C)? Why or why not? 
This model is actually not that much different from when we just added Participant to the model. This 
is because the two options are doing essentially the same thing. 

What about this model? 

modelF <- nlme::gls(Taps ~ 1 + StimulantF ,  
          corr = corCompSymm(form = ~1 | participantF)) 
summary(modelF) 
Generalized least squares fit by REML 
  Model: Taps ~ 1 + StimulantF  
  Data: NULL  
    AIC   BIC logLik 
  88.51 89.49 -39.25 
 
Correlation Structure: Compound symmetry 
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 Formula: ~1 | participantF  
 Parameter estimate(s): 
   Rho  
0.9143  
 
Coefficients: 
            Value Std.Error t-value p-value 
(Intercept)   474    12.336   38.43  0.0000 
StimulantF1     5     3.037    1.65  0.1341 
StimulantF2   -12     3.037   -3.95  0.0033 
 
 Correlation:  
            (Intr) StmlF1 
StimulantF1  0.0          
StimulantF2  0.0   -0.5   
 
Standardized residuals: 
    Min      Q1     Med      Q3     Max  
-1.0233 -0.5412 -0.3149  0.2952  1.7318  
 
Residual standard error: 25.41  
Degrees of freedom: 12 total; 9 residual 

(i) What do we learn? 
once control for x, remaining errors are even more correlated, new se(ybar) 25.41/sqrt(12)sqrt(1 + 
2.914). So this gives us the ‘se inflation’ from the correlated observations without specifying the 
difference in means across the participants. The previous model would be more different if we 
modelled a different covariance structure vs. ‘group differences’ 

Note: Using the blocking variable both in the fixed effects part of the model and in the random 
effects part of the model is often essentially redundant, but hopefully you can see how it might 
help to do different things in the two places, e.g., using a more complicated covariance 
structure for the regions. 

Example 2: Computer Problem 7 (due 7am Wednesday) 

Recall our pace of life data 
PaceData = read.table("https://www.rossmanchance.com/stat414/data/Pace.txt", header
=TRUE) 
head(PaceData) 
             City Heart Walk Talk Bank Watch    Region 
1       Boston,MA    24   28   24   31    30 Northeast 
2      Buffalo,NY    29   23   23   30    33 Northeast 
3      NewYork,NY    31   24   18   29    32 Northeast 
4 SaltLakeCity,UT    26   28   23   28    23      West 
5     Columbus,OH    26   22   30   27    23   Midwest 
6    Worcester,MA    20   25   24   26    27 Northeast 

Let’s center the walk variable 
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walk.c = PaceData$Walk - mean(PaceData$Walk) 
summary(m1 <- lm(Heart ~ walk.c, data = PaceData)) 
 
Call: 
lm(formula = Heart ~ walk.c, data = PaceData) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-9.052 -3.283 -0.475  3.707 10.332  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   19.806      0.827   23.96   <2e-16 *** 
walk.c         0.423      0.196    2.16    0.038 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 4.96 on 34 degrees of freedom 
Multiple R-squared:  0.121, Adjusted R-squared:  0.095  
F-statistic: 4.68 on 1 and 34 DF,  p-value: 0.0377 

(a) How do we interpret the intercept? What is the SE of the intercept? 

What is the ICC due to the regions? 

ICC::ICCbare(y = PaceData$Heart, x = PaceData$Region) 
[1] 0.1565 

Allow the model to estimate a block-specific correlation. 
summary(m2 <- gls(Heart ~ walk.c , data = PaceData, 
        corr = corCompSymm(form = ~1 | Region))) 
Generalized least squares fit by REML 
  Model: Heart ~ walk.c  
  Data: PaceData  
    AIC   BIC logLik 
  223.3 229.4 -107.6 
 
Correlation Structure: Compound symmetry 
 Formula: ~1 | Region  
 Parameter estimate(s): 
    Rho  
0.05066  
 
Coefficients: 
             Value Std.Error t-value p-value 
(Intercept) 19.806    0.9870  20.067  0.0000 
walk.c       0.373    0.1976   1.887  0.0678 
 
 Correlation:  
       (Intr) 



Fall, 2025  Monday, Oct. 13 

walk.c 0      
 
Standardized residuals: 
     Min       Q1      Med       Q3      Max  
-1.80622 -0.68152 -0.07925  0.75459  2.04808  
 
Residual standard error: 4.996  
Degrees of freedom: 36 total; 34 residual 
#install.packages("stargazer") 
library(stargazer) 
stargazer(m1, m2, type = "text") 
 
====================================================== 
                           Dependent variable:         
                    ---------------------------------- 
                                  Heart                
                            OLS           generalized  
                                         least squares 
                            (1)               (2)      
------------------------------------------------------ 
walk.c                    0.423**           0.373*     
                          (0.196)           (0.198)    
                                                       
Constant                 19.810***         19.810***   
                          (0.827)           (0.987)    
                                                       
------------------------------------------------------ 
Observations                 36               36       
R2                         0.121                       
Adjusted R2                0.095                       
Log Likelihood                             -107.600    
Akaike Inf. Crit.                           223.300    
Bayesian Inf. Crit.                         229.400    
Residual Std. Error   4.960 (df = 34)                  
F Statistic         4.675** (df = 1; 34)               
====================================================== 
Note:                      *p<0.1; **p<0.05; ***p<0.01 

(b) What is the estimated correlation within regions? Why is it not the same as the ICC? 
How have the standard errors changed? Why do we expect SE(intercept) to increase? 

Note: The standard error for the explanatory variable could go up or down depending on 
whether the explanatory variable varies mostly within or between regions. Here, the standard 
error decreased; it’s like getting a more direct comparison of the treatment effects when there 
are on more homogeneous units. On the other hand, if most of the explanatory variable 
variation is between blocks, say the 𝑅𝑅2 from regressing 𝑥𝑥 on the Region was above say 0.70, 
we would expect to see SE inflation due to the design effect (it’s like having too small of SD(X) 
within the blocks!) 
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Example 3: Back to finger tapping study 

An alternative approach 

The finger tapping study is a good example where we aren’t really all that interested in the four 
participants themselves, we were just trying to control for that person-to-person variability, to 
help us assess the person-adjusted differences among the stimulants. In fact, we might be 
willing to consider the participants as a random sample?… 

(a) Suppose we had a larger study with lots more participants. What would be a 
downside to including the participant variable in the model? 

That would be a lot of coefficients or really a lot of ‘degrees of freedom’ to estimate all those different 
coefficients. 

In a situation like this, one option is to treat person as a random effect rather than a fixed 
effect. This means we are going to treat these 4 participants not as (the only) 4 levels of a 
factor, but as a random sample from a population (if I did the study again, I would get 4 
different participants). The assumption we are going to make is that the “participant effects” 
follow a normal distribution, centered at zero, with variance 𝜏𝜏2. Let’s call these participant 
effects, 𝑢𝑢𝑗𝑗, so we have 𝑢𝑢𝑗𝑗 ~ 𝑁𝑁(0, 𝜏𝜏2). Our model equation becomes: 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖 where 𝑢𝑢𝑗𝑗 
~ 𝑁𝑁(0, 𝜏𝜏2) and 𝜖𝜖𝑖𝑖𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎2). We also assume 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑗𝑗 , 𝜖𝜖𝑖𝑖𝑖𝑖� = 0. 

Big deal, I changed 𝛽𝛽’s to 𝑢𝑢’s, but that is one way of saying we aren’t considering the 
participant effects as parameters anymore. Instead, we replace them with one parameter, 𝜏𝜏2, 
which represents the participant-to-participant variation in the population of (potential) 
participants. This “small” change will have a large impact on the properties of the model. 

(b) According to this model, what is 𝑉𝑉�𝑌𝑌𝑖𝑖𝑖𝑖�? 

𝑉𝑉�𝑌𝑌𝑖𝑖𝑖𝑖� = 𝜏𝜏2 + 𝜎𝜎2 

(c) According to this model, what is 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑘𝑘𝑘𝑘� (Two different observations in the same 
‘group’? 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑘𝑘𝑘𝑘� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗 + 𝜖𝜖𝑘𝑘𝑘𝑘� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑗𝑗 ,𝑢𝑢𝑗𝑗� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑘𝑘𝑘𝑘� = 𝜏𝜏2 

To fit this model, today we will use the “lme” command from the nlme package which you 
already have because it contains gls. 

#library(nlme) 
rm1 = lme(fixed = Taps ~ 1 , random = ~1 | participant, data = fingertapstudy, meth
od="REML") 
#The notation (1|subject) is how we tell R to treat the participants as random effe
cts 
 
summary(rm1) 
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Linear mixed-effects model fit by REML 
  Data: fingertapstudy  
    AIC   BIC logLik 
  102.3 103.5 -48.17 
 
Random effects: 
 Formula: ~1 | participant 
        (Intercept) Residual 
StdDev:       23.63    12.27 
 
Fixed effects:  Taps ~ 1  
            Value Std.Error DF t-value p-value 
(Intercept)   474     12.34  8   38.43       0 
 
Standardized Within-Group Residuals: 
    Min      Q1     Med      Q3     Max  
-1.2496 -0.7895  0.1400  0.5698  1.3015  
 
Number of Observations: 12 
Number of Groups: 4  
logLik(rm1) 
'log Lik.' -48.17 (df=3) 

(d) How many parameters are estimated in this model? How does the estimated 
intercept change? Standard error? What are the estimated variance components? 
There 3 parameters: intercept, 𝜏𝜏2, 𝜎𝜎2. The estimated intercept is still 𝑦𝑦‾ with SE = 12.335. 𝜏̂𝜏 = 23.63 and 
𝜎𝜎� = 12.27 

We can view the estimated variance-covariance matrix for individual subjects. 

getVarCov(rm1, subject = "1", type = "marginal")[[1]] 
      1     2     3 
1 709.0 558.5 558.5 
2 558.5 709.0 558.5 
3 558.5 558.5 709.0 

And we can make R do the conversion to correlations 
cov2cor(getVarCov(rm1, subject = "1", type = "marginal")[[1]]) 
       1      2      3 
1 1.0000 0.7877 0.7877 
2 0.7877 1.0000 0.7877 
3 0.7877 0.7877 1.0000 

So we have partitioned the total random variability into a variance component for the individual 
observations within each person (assumed to be the same across the participants) and a 
variance component for the participants. This also nicely induces a non-zero correlation 
between two observations from the same Level 2 units (this allows us to model dependence 
within the groups). 

(e) Find the estimated “total variation” by summing 𝜏̂𝜏2 + 𝜎𝜎�2. 
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23.63^2 + 12.27^2 = 709 (the diagonal entries of the variance-covariance marix 

(f) How much of this variation is due to the different participants? 

23.63^2/(709) = 0.788, our ICC 

Notes 

Correlated data is encountered in nearly every field. In education, student scores from a 
particular teacher are typically more similar than scores of other students who have had a 
different teacher. Here we expect repeated measurements on the same individual to be more 
similar than finger tap measurements from other participants. In political polling, opinions from 
members of the same household are usually more similar than opinions of members from 
other randomly selected households. The intraclass correlation coefficient indicates how 
“reliably” we can predict an observation based on which group (e.g., subject) it comes from. If 
you have a larger intraclass correlation coefficient, the effective sample size is smaller. 

• Used a “mixed effects” model allows us to account for the block differences as well as the 
correlation of observations within blocks/clusters simultaneously. 

• Some packages/functions report the estimated variances, some the estimated standard 
deviations, some both. 

Computer Problem 7 cont. 

(c) Do a quick internet or ChatGPT search on “random vs. fixed effects.” Submit a short 
summary of the distinction, AND bring with you to class on Wednesday. Be ready to 
justify whether you would treat Region as a fixed or random effect in the Pace of Life 
study. 
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