Fall, 2025 Monday, Oct. 13

Stat 414 - Day 7

Correlated Observations

Last Time

+  We often focus on fitting a linear model to predict the mean response depending on
predictor variables. After adjusting for those “fixed effects,” there is often a lot of
information in the residuals, e.g., what patterns are still left unexplained. Perhaps there is
an important variable missing from our model. Perhaps there are “variance covariates”
that can explain variation in the variation of the residuals (“heterogeneity”). Perhaps we
are most interested in adjusting the standard errors of the regression coefficients to
improve the appropriateness of our p-values and confidence intervals.

»  Multiple regression models work beautifully for both randomized experiments and
observational studies. Randomized experiments are often designed to have
“orthogonality” among the predictors so they explain distinct sources of variation in the
response. With observational studies on the other hand, we often have to deal with the
“overlap” of variation explain by the different predictors (e.g., multicollinearity, sequential
vs. adjusted tests). In particular, we must always recognize that slope coefficients are
“adjusted for” other variables in the model.

« Don’t forget to consider visualizations (e.g., added-variable plots) as a tool for explaining
your model.

+ ICC can also be interpreted as the amount of correlation in pairs of observations within the
same group. Keep in mind how you would manually calculate this number (e.g., find all
possible pairs, how correlated are the two sets of responses) and that this is different from
the correlation coefficient of two variables.

+ Also keep in mind the distinction between the variance-covariance matrix of the parameter
estimates (e.g., V(ﬁ) and and the variance-covariance matrix of the residuals V(¢;) which
impacts the variance-covariance matrix of the responses V (Y;). Initially, we assumed
V(g;) = 0%l and then we looked at ways to allow those diagonal elements to not all be the
same (e.g., gls). Next we will focus on the off-diagonal elements.

Example 1: Finger Tapping Study

Caffeine is widely used as a stimulant — but are there other ways to get the same effects, with
little to no downside? To begin to answer this question, a study compared the effects of
caffeine with theobromine, which is the active chemical naturally found in chocolate and is an
alkaloid with a similar molecular structure and effects on people as caffeine (Scott & Chen,
1944, “Comparison of Action of 1-Ethyl Theobromine and Caffeine in Animals and Man,” the
Journal of Pharmacology and Experimental Therapeutics). To measure the effects of these two
different chemicals, the researchers trained subjects to tap their fingers in such a way that the
rate could be measured. After learning/practicing this type of finger tapping, participants took
either took a caffeine pill (200 mg), a theobromine pill (200 mg), or a placebo, and then their
finger tapping rate was measured two hours later.

fingertapstudy = read.table("http://www.isi-stats.com/isi2/data/Fingertap.txt","\t"
, header=TRUE)

attach(fingertapstudy) #this is an optional and sometimes Looked-down-upon method
for letting R kRnow which data file you are using so you don't have to use the data


https://linkinghub.elsevier.com/retrieve/pii/S0022356525085775
https://linkinghub.elsevier.com/retrieve/pii/S0022356525085775
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file name every time
summary (fingertapstudy)

Taps Stimulant participant

Min. 1446  Length:12 Length:12

1st Qu.:454 Class :character Class :character
Median :469 Mode :character Mode :character

Mean 1474
3rd Qu.:485
Max. :523
var(Taps)
[1] 607.5

#We will use maximum Likelihood estimation today (REML)

#install.packages("nlme")
library(nlme)
summary(model® <- gls(Taps ~ 1))
Generalized least squares fit by REML

Model: Taps ~ 1

Data: NULL

AIC BIC loglik
108.2 109 -52.1

Coefficients:
Value Std.Error t-value p-value
(Intercept) 474 7.115 66.62 0

Standardized residuals:
Min Q1 Med Q3 Max
-1.1361 -0.7912 -0.2029 0.4362 1.9881

Residual standard error: 24.65

Degrees of freedom: 12 total; 11 residual
#variance-covariance matrix of the residuals
#install.packages("nlraa”)

vcmatrix® = nlraa::var_cov(model®); vcmatrix@[1:5, 1:5]

[,11 [,2] [,31 [,4] [,5]
[1,] 607.5 ©.0 ©.0 0.0 0.0

[2,] 0.0 6067.5 0.0 0.0 0.0
[3,] 0.0 0.0 607.5 0.0 0.0
[4,] 0.0 0.0 0.0 607.5 0.0
[5,] 0.0 0.0 0.0 0.0 607.5
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To make some math easier, | want to use effect-coding for the categorical variables today. We

can change the coding from the get go:
# Set the contrast for the factor 'group'’
participantF = as.factor(participant)
contrasts(participantF) <- "contr.sum"
contrasts(participantF)

[,11 [,2] [,3]
A 1 (%] 0
B (%] 1 0
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C 0 0 1

D -1 -1 -1

StimulantF = as.factor(Stimulant)
contrasts(StimulantF) <- "contr.sum"
contrasts(StimulantF)

[,1] [,2]
Caffeine 1 (%]
Placebo 0 1
Theobromine -1 -1

Consider a one-way ANOVA on the stimulants:
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))
iscamsummary(Taps, StimulantF)

Missing n Min Q1 Median Q3 Max Mean SD Skewness

Caffeine 0 4 453 462.8 470.0 486.2 523 479 30.58 0.878
Placebo 0 4 446 449.8 453.0 465.2 496 462 22.96 1.066
Theobromine 0 4 460 469.0 476.5 488.5 511 481 21.77 0.634

iscamboxplot(Taps, StimulantF)
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summary(aov(Taps ~ StimulantF))
Df Sum Sq Mean Sq F value Pr(>F)
StimulantF 2 872 436 0.68 0.53
Residuals 9 5810 646
summary(modelA <- gls(Taps ~ StimulantF))
Generalized least squares fit by REML
Model: Taps ~ StimulantF
Data: NULL
AIC BIC loglik
98.13 98.92 -45.06

Coefficients:

Value Std.Error t-value p-value
(Intercept) 474 7.335 64.63 0.0000
StimulantF1 5 10.373 0.48 0.6413

StimulantF2 -12 10.373 -1.16 0.2771
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Correlation:

(Intr) StmlF1
StimulantFl 0.0
StimulantF2 ©.0 -90.5

Standardized residuals:
Min Q1 Med Q3 Max
-1.0233 -0.5412 -0.3149 ©.2952 1.7318

Residual standard error: 25.41
Degrees of freedom: 12 total; 9 residual
vcmatrixa = nlraa::var_cov(modelA); vcmatrixa[1:5, 1:5]

[,11 [,2] [,31 [,4] [,5]
[1,] 645.6 ©.0 ©.0 0.0 0.0

[2,] 0.0 645.6 ©0.0 0.0 0.0
[3,] 0.0 0.0 645.6 0.0 0.0
[4,] 0.0 0.0 0.0 645.6 0.0
[5,] 0.0 0.0 0.0 0.0 645.6

With effect coding and equal group sizes (N = Gn), the standard deviation of the intercept is

SD(¥) = o/v/N and the standard deviation of the slope coefficients is o x /(G — 1)/N where G
is the number of groups.

(a) What is the intercept? Why? What is its standard error? What about the treatment
coefficients? Is the difference among the stimulants statistically significant? (Be clear
how you are deciding.) The researcher insists there is a mistake because they know
there is a difference among these treatments; how would you respond?

The intercept is ybar (balanced design, effect coding) with se 25.41/sqrt(12) and, with effect coding,
the treatment coefficient SEs are 25.41*sqrt(G-1/N) = 10.373 where G = number of treatments and N is
overall sample size. The difference between the stimulants is not statistically significant, because the
remaining unexplained variability is still quite large. We have a small sample size in this study and
therefore low power.

Consider a one-way ANOVA on the participants.

#using effect coding
summary(modelB <- gls(Taps ~ participantF))
Generalized least squares fit by REML
Model: Taps ~ participantF
Data: NULL
AIC BIC loglik
79.98 80.38 -34.99

Coefficients:
Value Std.Error t-value p-value
(Intercept) 474 3.541 133.84 0.0000
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participantF1 -17 6.134 -2.77 0.0242
participantF2 -15 6.134 -2.45 0.0402
participantF3 -4 6.134 -0.65 0.5326
Correlation:

(Intr) prtcFl prtcF2
participantFl ©.000
participantF2 ©.000 -0.333
participantF3 ©0.000 -0.333 -0.333

Standardized residuals:
Min Q1 Med Q3 Max
-1.22271 -0.71325 ©0.08151 0.65211 1.22271

Residual standard error: 12.27

Degrees of freedom: 12 total; 8 residual

vcmatrixb = nlraa::var_cov(modelB); vcmatrixb[1:5, 1:5]
[,11 [,2]1 [,31 [,4] I[,5]

[1,] 150.5 0.0 0.9 0.0 0.0

[2,] 0.0 156.5 ©0.0 0.0 0.0
[3,] 0.0 0.0 150.5 0.0 0.0
[4,] 0.0 0.0 0.0 150.5 0.0
[5,] 0.0 0.0 0.0 0.0 150.5

(b) What is the estimated intercept? Why? What is its standard error? Is there
statistically significant person to person variation? Why might this be relevant to our
real research question comparing the treatments?

with effect coding, intercept still estimate overall mean 12.268/sqrt(12) = 3.541. The p-value for testing
the equality of all the participants’ means =.0024 so yes, significant person to person variation in
finger tapping rates. RCBD will allow a more direct comparison of the finger tap rates across
treatments within each participant...

(c) Include the participant variable in the model. How should this change the ANOVA
table?

will separate out the SS participants out of SSError but don’t expect the coefficients of the treatments
to change because of orthogonality in the RCBD (equal cell sizes).

summary(modelC <- gls(Taps ~ StimulantF + participantF, data = fingertapstudy))
Generalized least squares fit by REML
Model: Taps ~ StimulantF + participantF
Data: fingertapstudy
AIC BIC loglLik
66.15 64.69 -26.07

Coefficients:

Value Std.Error t-value p-value
(Intercept) 474 2.147 220.74 0.0000
StimulantF1 5 3.037 1.65 0.1508
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StimulantF2 -12 3.037 -3.95 0.0075
participantF1 -17 3.719 -4.57 ©0.0038
participantF2 -15 3.719 -4.93 0.0069
participantF3 -4 3.719 -1.08 0.3235
Correlation:

(Intr) StmlF1 StmlF2 prtcF1l prtcF2
StimulantF1 0.000
StimulantF2 0.000 -0.500
participantFl ©0.000 ©0.000 ©.000
participantF2 ©.000 ©0.000 0.000 -0.333
participantF3 ©0.000 ©0.000 ©0.000 -0.333 -0.333

Standardized residuals:
Min Q1 Med Q3 Max
-1.210e+00 -5.041e-01 -4.202e-14 5.377e-01 1.075e+00

Residual standard error: 7.439
Degrees of freedom: 12 total; 6 residual

anova(modelC)
Denom. DF: 6

numDF F-value p-value
(Intercept) 1 48725 <.0001
StimulantF 2 8 0.0210
participantF 3 33 0.0004

vcmatrixc = nlraa::var_cov(modelC); vcmatrixc[1:5, 1:5]
[,11 [,2]1 [,31 [,4] I[,5]

[1,] 55.33 ©.00 ©0.00 ©.00 0.00

[2,] ©.00 55.33 ©0.00 ©.00 0.00

[3,] ©.00 ©0.00 55.33 ©.00 0.00

[4,] ©.00 ©0.00 ©0.00 55.33 0.00

[5,] ©.00 ©0.00 ©.00 ©.00 55.33

(d) Is the treatment variable now statistically significant? Why? How would you interpret
the coefficient of placebo? What are the standard errors of the placebo and
theobromine coefficients?

Yes, after adjusting for participants, p-value for Stimulant is .021 < .05. The standard errors of the
coefficients are smaller. The coefficient of the placebo is how much lower the placebo treatment is
from the overall mean on average (ybar_placebo vs. ybar). SE for a participant coefficient is 7.439 and
for treatment is 7.439 and for intercept is 7.439/.

We note that each subject participated in all 3 treatments, in random order, giving us a
randomized block design.

(e) Is it reasonable to consider the observations in this study independent from each
other? What should the variance-covariance matrix of the residuals look like?

We expect observations within the same person to be correlated, but uncorrelated with other
individuals. This will give us a ‘block diagonal’ variance-covariance matrix.



Fall, 2025 Monday, Oct. 13

Calculate and interpret the intraclass correlation for the subjects in the stimulant study.

#install.packages("ICC")

ICC::ICCbare(y = Taps, x = participantF)

[1] ©.7877

There is a strong correlation (.79) between the finger tapping rates with repeated observations on the

same individual.

(f) Does this amount of correlation seem 'meaningful? How does this compare to the
intraclass correlation coefficient we found with the Pace of Life study? Does that make
sense in context? Explain.

This is larger than what we saw before. We expect repeat observations on the same individual to be
more highly correlated that observations on different individuals living in the same city.

So let’s use generalized least squares model to model the intraclass correlation of repeat
observations on the same individual.

So we are now changing the assumptions of the basic regression model.
cor(eij, ei,j) =p#*0
The following model assumes “compound symmetry” (equal variances, equal covariances).

Let’s first just look at the participants variable.

#install.packages("nlme")
modelD <- nlme::gls(Taps ~ 1,
corr = corCompSymm(form = ~1 | participantF))

summary(modelD)
Generalized least squares fit by REML

Model: Taps ~ 1

Data: NULL

AIC BIC loglLik
102.3 103.5 -48.17

Correlation Structure: Compound symmetry
Formula: ~1 | participantF
Parameter estimate(s):

Rho
0.7877
Coefficients:
Value Std.Error t-value p-value
(Intercept) 474 12.34 38.43 0

Standardized residuals:
Min Q1 Med Q3 Max
-1.0516 -0.7323 -0.1878 ©0.4037 1.8402
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Residual standard error: 26.63
Degrees of freedom: 12 total; 11 residual
anova(modelD)
Denom. DF: 11

numDF F-value p-value
(Intercept) 1 1476 <.0001
#For comparison
#summary (model@ <- gls(Taps ~ 1))
#anova(model®, modelD)

(g) What is the estimated correlation coefficient? Does it look familiar? Is it statistically
significant? What is the residual standard error? How has the standard error for the
intercept changed (from model0)? Why? How would you explain this?

‘Rho’ is estimated to be 0.78772. The estimated intercept is still y with SE 12.33 The variance-
covariance matrix has that block diagonal pattern. The residual standard error is 26.63. The standard
error of the itnercept has increased because it now reflects the smaller ‘effective sample size’ from the

correlated observations. U/W X \/1 + (1 —ICC) X N. If we compare the model with and without

‘rho’ the ‘full model’ is significantly better from the likelihood ratio test (Hy:p = 0vs. H,: p # 0, df =1,
p-value = .0051).

What does our variance-covariance matrix look like?

Detour

. Cor(X,Y) = Cov(X,Y)/[SD(X)SD(Y)]

#Note, this doesn't work for the intercept only model
#vcmatrixd = nlraa::var_cov(modelD); vcmatrixd[1:5, 1:5]

#So we will use this instead
getVarCov(modelD, individual = 1)
Marginal variance covariance matrix
[,11 [,2]1 [,3]
[1,] 709.0 558.5 558.5
[2,] 558.5 709.0 558.5
[3,] 558.5 558.5 709.0
Standard Deviations: 26.63 26.63 26.63

(92) What are we considering to be X and Y here? What are our estimates of X and Y?
What is the estimated covariance?

X and Y represent two different observations on the same person so use é = 26.63, so covariance =
.7877 x 26.63 x 26.63 = 558.6

So let’s add this correlation structure to our earlier model:

modelE <- nlme::gls(Taps ~ 1 + StimulantF + participantF,
corr = corCompSymm(form = ~1 | participantF))
summary (modelE)
Generalized least squares fit by REML
Model: Taps ~ 1 + StimulantF + participantF
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Data: NULL
AIC BIC loglLik
68.15 66.48 -26.07

Correlation Structure: Compound symmetry
Formula: ~1 | participantF
Parameter estimate(s):

Rho
0
Coefficients:
Value Std.Error t-value p-value
(Intercept) 474 2.147 220.74 ©0.0000
StimulantF1 5 3.037 1.65 ©0.1508
StimulantF2 -12 3.037 -3.95 0.0075
participantF1 -17 3.719 -4.57 0.0038
participantF2  -15 3.719 -4.03 0.0069
participantF3 -4 3.719 -1.08 0.3235
Correlation:

(Intr) StmlF1 StmlF2 prtcFl prtcF2
StimulantF1 0.000
StimulantF2 0.000 -0.500
participantFl ©.000 ©0.000 ©0.000
participantF2 ©0.000 ©0.000 ©0.000 -0.333
participantF3 ©0.000 ©0.000 0.000 -0.333 -0.333

Standardized residuals:
Min Q1 Med Q3 Max
-1.210e+00 -5.041e-01 -7.633e-15 5.377e-01 1.075e+00

Residual standard error: 7.439
Degrees of freedom: 12 total; 6 residual

(h) Has anything changed (vs. model C)? Why or why not?
This model is actually not that much different from when we just added Participant to the model. This
is because the two options are doing essentially the same thing.

What about this model?

modelF <- nlme::gls(Taps ~ 1 + StimulantF ,
corr = corCompSymm(form = ~1 | participantF))

summary (modelF)
Generalized least squares fit by REML

Model: Taps ~ 1 + StimulantF

Data: NULL

AIC BIC loglik
88.51 89.49 -39.25

Correlation Structure: Compound symmetry
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Formula: ~1 | participantF
Parameter estimate(s):
Rho
0.9143

Coefficients:
Value Std.Error t-value p-value
(Intercept) 474 12.336 38.43 0.0000

StimulantF1 5 3.037 1.65 0.1341
StimulantF2 -12 3.037 -3.95 0.0033
Correlation:

(Intr) StmlF1
StimulantFl 0.0
StimulantF2 0.0 -0.5

Standardized residuals:
Min Q1 Med Q3 Max
-1.0233 -0.5412 -0.3149 ©0.2952 1.7318

Residual standard error: 25.41
Degrees of freedom: 12 total; 9 residual

(i) What do we learn?

Monday, Oct. 13

once control for x, remaining errors are even more correlated, new se(ybar) 25.41/sqrt(12)sqrt(1 +
2.914). So this gives us the ‘se inflation’ from the correlated observations without specifying the
difference in means across the participants. The previous model would be more different if we
modelled a different covariance structure vs. ‘group differences’

Note: Using the blocking variable both in the fixed effects part of the model and in the random
effects part of the model is often essentially redundant, but hopefully you can see how it might
help to do different things in the two places, e.g., using a more complicated covariance

structure for the regions.

Example 2: Computer Problem 7 (due 7am Wednesday)

Recall our pace of life data

PaceData = read.table("https://www.rossmanchance.com/stat414/data/Pace.txt", header

=TRUE)
head(PaceData)

City Heart Walk Talk Bank Watch
1 Boston,MA 24 28 24 31 30
2 Buffalo,NY 29 23 23 30 33
3 NewYork,NY 31 24 18 29 32
4 SaltlLakeCity,UT 26 28 23 28 23
5 Columbus,OH 26 22 30 27 23
6 Worcester,MA 20 25 24 26 27

Let’s center the walk variable

Region
Northeast
Northeast
Northeast

West
Midwest
Northeast
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walk.c = PaceData$Walk - mean(PaceData$Walk)
summary(ml <- lm(Heart ~ walk.c, data = PaceData))

Call:
Im(formula = Heart ~ walk.c, data = PaceData)

Residuals:
Min 1Q Median 3Q Max
-9.052 -3.283 -0.475 3.707 10.332

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 19.806 0.827 23.96 <2e-16 **x*
walk.c 0.423 0.196 2.16 0.038 *
Signif. codes: © '***' @9.,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 4.96 on 34 degrees of freedom
Multiple R-squared: ©0.121, Adjusted R-squared: ©.095
F-statistic: 4.68 on 1 and 34 DF, p-value: 0.0377

(a) How do we interpret the intercept? What is the SE of the intercept?
What is the ICC due to the regions?

ICC::ICCbare(y = PaceData$Heart, x = PaceData$Region)
[1] ©.1565

Allow the model to estimate a block-specific correlation.
summary(m2 <- gls(Heart ~ walk.c , data = PaceData,
corr = corCompSymm(form = ~1 | Region)))
Generalized least squares fit by REML
Model: Heart ~ walk.c
Data: PaceData
AIC BIC loglik
223.3 229.4 -107.6

Correlation Structure: Compound symmetry
Formula: ~1 | Region
Parameter estimate(s):
Rho
0.05066

Coefficients:

Value Std.Error t-value p-value
(Intercept) 19.806 0.9870 20.067 ©.0000
walk.c 0.373 0.1976 1.887 ©0.0678

Correlation:
(Intr)

Monday, Oct. 13
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walk.c ©

Standardized residuals:
Min Q1 Med
-1.80622 -0.68152 -0.07925

Q3 Max
0.75459 2.04808

Residual standard error: 4.996
Degrees of freedom: 36 total; 34 residual
#install.packages("stargazer™)

library(stargazer)

stargazer(ml, m2, type = "text")

Constant

Observations

R2

Adjusted R2

Log Likelihood
Akaike Inf. Crit.
Bayesian Inf. Crit.
Residual Std. Error
F Statistic

Heart
oLS generalized
least squares
(1) (2)
0.423** 0.373*
(0.196) (0.198)
19.810*** 19.810***
(0.827) (0.987)
36 36
0.121
0.095
-107.600
223.300
229.400

4.960 (df = 34)
4.675** (df = 1; 34)

*p<0.1; **p<0.05; ***p<0.01

Monday, Oct. 13

(b) What is the estimated correlation within regions? Why is it not the same as the ICC?
How have the standard errors changed? Why do we expect SE(intercept) to increase?

Note: The standard error for the explanatory variable could go up or down depending on
whether the explanatory variable varies mostly within or between regions. Here, the standard
error decreased; it’s like getting a more direct comparison of the treatment effects when there
are on more homogeneous units. On the other hand, if most of the explanatory variable
variation is between blocks, say the R? from regressing x on the Region was above say 0.70,
we would expect to see SE inflation due to the design effect (it's like having too small of SD(X)

within the blocks!)



Fall, 2025 Monday, Oct. 13

Example 3: Back to finger tapping study
An alternative approach

The finger tapping study is a good example where we aren'’t really all that interested in the four
participants themselves, we were just trying to control for that person-to-person variability, to
help us assess the person-adjusted differences among the stimulants. In fact, we might be
willing to consider the participants as a random sample?...

(a) Suppose we had a larger study with lots more participants. What would be a
downside to including the participant variable in the model?

That would be a lot of coefficients or really a lot of ‘degrees of freedom’ to estimate all those different
coefficients.

In a situation like this, one option is to treat person as a random effect rather than a fixed
effect. This means we are going to treat these 4 participants not as (the only) 4 levels of a
factor, but as a random sample from a population (if | did the study again, | would get 4
different participants). The assumption we are going to make is that the “participant effects”
follow a normal distribution, centered at zero, with variance t2. Let’s call these participant
effects, u;, so we have u; ~ N(0,72). Our model equation becomes: Y;j = Bo +u; + €;; where u;

~N(0,72) and €;; ~ N(0, ). We also assume cov(u;, €;;) = 0.

Big deal, | changed f’s to u’s, but that is one way of saying we aren’t considering the
participant effects as parameters anymore. Instead, we replace them with one parameter, 72,
which represents the participant-to-participant variation in the population of (potential)
participants. This “small” change will have a large impact on the properties of the model.

(b) According to this model, what is V(Y;;)?
V(Y;;) =12+ 02
(c) According to this model, what is Cov(Yi]-, ij) (Two different observations in the same
‘group’?
Cov(Yij,ij) = Cov(uj +€;5,u; + ekj) = Cov(uj,uj) + Cov(eij,ekj) =12
To fit this model, today we will use the “Ime” command from the nime package which you
already have because it contains gls.

#Library(nlme)

rml = lme(fixed = Taps ~ 1 , random = ~1 | participant, data = fingertapstudy, meth
od="REML")

#The notation (1[subject) is how we tell R to treat the participants as random effe
cts

summary(rml)
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Linear mixed-effects model fit by REML
Data: fingertapstudy
AIC BIC loglik
102.3 103.5 -48.17

Random effects:
Formula: ~1 | participant
(Intercept) Residual
StdDev: 23.63 12.27

Fixed effects: Taps ~ 1
Value Std.Error DF t-value p-value
(Intercept) 474 12.34 8 38.43 (%]

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.2496 -0.7895 ©0.1400 0.5698 1.3015

Number of Observations: 12
Number of Groups: 4
logLik(rml)

'log Lik.' -48.17 (df=3)

(d) How many parameters are estimated in this model? How does the estimated
intercept change? Standard error? What are the estimated variance components?

There 3 parameters: intercept, 72, o2. The estimated intercept is still y with SE =12.335. 7 = 23.63 and
6=12.27

We can view the estimated variance-covariance matrix for individual subjects.

getVarCov(rml, subject = "1", type = "marginal”)[[1]]
1 2 3

1 709.0 558.5 558.5

2 558.5 709.0 558.5

3 558.5 558.5 709.0

And we can make R do the conversion to correlations

cov2cor(getVarCov(rml, subject = "1", type = "marginal")[[1]])
1 2 3

1 1.0000 0.7877 0.7877

2 0.7877 1.0000 0.7877

3 0.7877 0.7877 1.0000

So we have partitioned the total random variability into a variance component for the individual
observations within each person (assumed to be the same across the participants) and a
variance component for the participants. This also nicely induces a non-zero correlation
between two observations from the same Level 2 units (this allows us to model dependence
within the groups).

e) Find the estimated “total variation” by summing 72 + 2.
(e) y g
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23.6372 + 12.2772 = 709 (the diagonal entries of the variance-covariance marix

(f) How much of this variation is due to the different participants?

23.6372/(709) = 0.788, our ICC

Notes

Correlated data is encountered in nearly every field. In education, student scores from a
particular teacher are typically more similar than scores of other students who have had a
different teacher. Here we expect repeated measurements on the same individual to be more
similar than finger tap measurements from other participants. In political polling, opinions from
members of the same household are usually more similar than opinions of members from
other randomly selected households. The intraclass correlation coefficient indicates how
“reliably” we can predict an observation based on which group (e.g., subject) it comes from. If
you have a larger intraclass correlation coefficient, the effective sample size is smaller.

+ Used a “mixed effects” model allows us to account for the block differences as well as the
correlation of observations within blocks/clusters simultaneously.

«  Some packages/functions report the estimated variances, some the estimated standard
deviations, some both.

Computer Problem 7 cont.

(c) Do a quick internet or ChatGPT search on “random vs. fixed effects.” Submit a short
summary of the distinction, AND bring with you to class on Wednesday. Be ready to
justify whether you would treat Region as a fixed or random effect in the Pace of Life
study.
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