Fall, 2025 Wednesday, Oct. 8

Stat 414 - Day 6

Adjusted Associations

+ To add a categorical variable to our linear model, can create k-1 binary indicator (0,1)
variables or k-1 (-1, 0, 1)/“sum to zero” variables.

* Interpretations:

«  With indicator coding, the intercept is the predicted mean for the reference category and
the slope coefficients represent the difference in means to the reference category.

«  With effect coding, the intercept is the “least squares” estimate of the overall mean and
the slope coefficients represent the “effects” (differences between group means and
overall means). You can solve for the missing coefficient by making them sum to zero.

» To test the statistical significance of the variable, test Hy: 8, =...= Bx—; = 0 in a partial F-
test or likelihood ratio test (df = k -1). Still need normality and equal variance of the
responses in each group.

«  Measures of ‘effect size’: R? vs. w? vs. ICC - different ways to measure the proportion of
total variation in the response due to the categorical variable (bewteen vs. within groups)
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Example 1: Squid revisited

We started with simple explorations of the data.

Missing n Min Q1 Median Q3 Max  Mean SD Skewness
1 © 45 0.152 9.382 10.661 11.769 14.981 10.200 2.866 -1.335
2 0 34 0.006 2.914 3.497 5.221 13.633 4.809 3.081 1.213
3 © 75 1.975 3.977 5.156 7.472 16.240 6.106 3.075 1.202
4 0 46 0.113 2.505 4.096 6.299 9.400 4.591 2.581 0.297
5 0 38 0.013 2.316 3.385 4.826 10.847 3.686 2.348 1.001
6 0 38 0.023 0.189 ©.300 5.850 9.282 2.623 3.299 0.814
7 0 37 0.015 0.166 ©.337 ©0.862 11.269 1.353 2.576 2.584
8 © 52 0.012 0.363 ©0.605 0.955 7.270 1.107 1.508 2.878
9 0 134 0.008 1.071 4.000 9.783 37.811 6.225 6.442 1.478
10 0 134 0.012 1.228 3.093 8.239 24.746 6.090 6.784 1.343
11 0 88 0.011 2.993 4.505 7.630 22.468 5.604 4.182 1.644
12 0 47 0.008 3.406 4.572 8.061 20.340 5.826 4.211 1.214

We saw that variation in Testisweight measurements varied by month and by DML. But | admit
| was a little confused by this output.
library(nlme)
model3REML = gls(Testisweight ~ DML, data=Squid, weights = varIdent(form= ~ 1 | MON
TH), method="REML")
summary (model3REML)
Generalized least squares fit by REML
Model: Testisweight ~ DML
Data: Squid
AIC BIC loglik
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Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | MONTH
Parameter estimates:
2 9 12 11 8 10 5 7 6 4 1 3
1.000 2.681 1.616 1.680 3.004 2.121 2.705 2.310 1.949 1.703 1.986 1.932

Coefficients:
Value Std.Error t-value p-value
(Intercept) -5.421 0.3437 -15.77 0
DML 0.044 0.0013  33.12 0
Correlation:
(Intr)
DML -0.949

Standardized residuals:
Min Q1 Med Q3 Max
-3.9828 -0.7930 -0.1288 ©.5329 4.9889

Residual standard error: 1.555
Degrees of freedom: 768 total; 766 residual
model3REML$modelStruct$varStruct
Variance function structure of class varIdent representing

2 9 12 11 8 10 5 7 6 4 1 3
1.000 2.681 1.616 1.680 3.004 2.121 2.705 2.310 1.949 1.703 1.986 1.932

| thought months 9 and 10 had the larger variances and month 8 had one of the smallest. So
why is Month 8 getting the largest multiplier?

(a) What are some possible explanations?

() (code)

library(tidyverse)
modellREML <- gls(Testisweight ~ DML, data = Squid, method = "REML")

ggplot(Squid, aes(x = DML, y = Testisweight)) +
geom_point() +
geom_abline(intercept = -6.53, slope = .04660, color = "red", linetype = "dashe
d") + # Add the overall regression line
facet_wrap(~ MONTH) +
labs(title = "Scatterplots for each month",
X = "DML",
y = "Testisweight") +
theme_bw()
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Scatterplots for each month
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(i) (code)

ggplot(Squid, aes(x = DML, y = residuals(modellREML, type = "normalized"))) +
geom_point() +
geom_abline(intercept = 0, slope = @, color = "red", linetype = "dashed") + # A
dd the overall regression Lline
facet_wrap(~ MONTH) +
labs(title = "Scatterplots for each month",
x = "DML",
y = "Residuals") +
theme_bw()

Scatterplots for each month
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(b) How do we improve the model then?

vfbymonth <- varPower(form = ~ DML | MONTH) #Don't use with quantitative predictor
s that can equal zero
fMonth = as.factor(Squid$MONTH)
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model5REML = gls(Testisweight ~ DML + fMonth, data=Squid, weights = varIdent(form=
~ 1 | MONTH), method="REML")

#model5REML <- gls(Testisweight ~ DML + fMonth, data = Squid, weights = vfbymonth)
#default is REML

model5REML$modelStruct$varStruct

Variance function structure of class varIdent representing

2 9 12 11 8 10 5 7 6 4 1 3
1.000 3.251 1.412 1.818 1.168 2.585 2.680 1.673 1.622 1.797 2.248 2.220
summary (model5REML)

Generalized least squares fit by REML
Model: Testisweight ~ DML + fMonth
Data: Squid

AIC BIC loglik
3744 3859 -1847

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | MONTH
Parameter estimates:
2 9 12 11 8 10 5 7 6 4 1 3
1.000 3.251 1.412 1.818 1.168 2.585 2.680 1.673 1.622 1.797 2.248 2.220

Coefficients:
Value Std.Error t-value p-value

(Intercept) -4.041 0.5940 -6.80 0.0000
DML 0.043 0.0012 34.92 0.0000
fMonth2 -0.301 0.5066 -0.59 0.5527
fMonth3 -1.951 0.5472 -3.56 0.0004
fMonth4 -2.358 0.5584 -4.22 0.0000
fMonth5 -3.479 0.7127 -4.88 0.0000
fMonth6é -3.354 0.5623 -5.96 0.0000
fMonth7 -4.021 0.5755 -6.99 0.0000
fMonth8 -5.550 0.4903 -11.32 0©.0000
fMonth9 -1.588 0.5676 -2.80 0.0053
fMonth1e -0.676 0.5282 -1.28 0.2011
fMonthll 0.081 0.5165 0.16 0.8756
fMonth12 0.619 0.5267 1.18 0.2401

Standardized residuals:
Min 01 Med 03 Max
-4.19224 -0.63380 -0.07374 ©.57826 5.13864

Residual standard error: 1.289
Degrees of freedom: 768 total; 755 residual

(c) How do we interpret the slope parameter estimates? How do the month parameter
estimates match up with our descriptive analysis?



Fall, 2025 Wednesday, Oct. 8

the slope estimate for month 8 tells us how much lower we predict the mean testisweight is compared
to month 1 after adjusting for DML, now the slope estimate and the variance estimates are more
consistent with the summary statistics

With multiple regression, we always have to interpret the slope coefficients conditional on the
other variables in the model (e.g., the “effect” of DML after adjusting for MONTH). But what
does that mean?

Example 2 - Applet demonstration (see handout)

Example 3 - Salary data cont.

Let’s look at the salary data another way
saldata <-read.table("https://www.rossmanchance.com/stat414/data/saldata.txt", head
er=T)

(a) Calculate the correlation coefficient between salary and semesters. What does this
number tell you?

cor(saldatag$salary, saldata$semesters)

[1] ©.575

The strength of the linear association between the salaries and number of semesters
across different people.

Key Idea

Rather than looking at the correlation between two variables, | want to measure how correlated
measurements from different people in the same maijor are. Let’s rearrange the data a bit:
#Llibrary(tidyverse)
salpairs <- saldata |>

group_by(major) |>

reframe(

as.data.frame(t(combn(salary, 2))) |>
rename(obsl = V1, obs2 = V2)
)

head(salpairs, 16)

# A tibble: 16 x 3

major obsl obs2
<chr> <int> <int>
business 40 44
business 40 37
business 40 39
business 40 42
business 40 38
business 40 36
business 40 32
business 44 37
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9 business 44 39
10 business 44 42
11 business 44 38
12 business 44 36
13 business 44 32
14 business 37 39
15 business 37 42
16 business 37 38

(b) What has this code done?!
Created all possible pairs of observations of individuals within the same major
(c) Calculate the correlation between obs1 and obs2 in this new data frame.

cor(salpairs$obsl, salpairs$obs2)
[1] ©.7997

(d) How does the correlation in (c) compare to what you found for the ICC for these
data?

Similar

Within-Group (Major) Pairs of Salary
Pairwise r = 0.800 | ICC (ANOVA) = 0.7567
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Observation 1 (salary)

#install.packages("ICC")
ICC::ICCbare(x = major, y = salary, data = saldata)
[1] ©.7567

The intraclass correlation coefficient (ICC) can also be interpreted as a measure of how
correlated two responses are from individuals in the same “class.” It measures the degree of
“sameness” of individuals in the same group vs. across groups. The most traditional
application is as a measure of “reliability” of repeat observations.
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Notes:

«  The reason the values don’t match better is due to the small number of groups, so the ICC
tends to underestimate the true correlation. There is also a distinction between the
population ICC and the sample results which use the same observations many times.

« There are a number of different intraclass correlation coefficients out there



