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Stat 414 — Day 5 revised 
Categorical Predictors/ANOVA 

Last Time 

• Detecting unequal variance: Often focus on whether there is strong evidence of a linear 
relationship between |𝑒𝑖| or 𝑒2 and the fitted value or vs. individual predictors (e.g., Scale-
Location Plot). Other tests for heterogeneity include Barlett’s test, Levene’s test for 
comparing groups. 

• Transforming the response variable can often better “scaled” where the variability in the 
response is more consistent. 

• Weighted least squares can account for unequal variance in the response, e.g., allowing 
Predicting Intervals for have different widths depending on the weight values. Remember 
to compare validity using standardized residuals. 

• Generalized least squares allows the modeler to specify different variance-covariance 

matrices for the residuals (e.g., 𝜎𝑖
2) 

• Sandwich estimation uses the observed residuals to specify a more complicated variance-
covariance matrix to estimate the standard errors of the coefficients. “Allows you to take 
into account the heteroscedasticity without having to know about or model the functional 
form of the heteroscedasticity or use ‘arbitrary’ transformations.” 

Example 0: Squid revisited 
Squid<-read.table("http://www.rossmanchance.com/stat414/data/Squid.txt",header=T) 

We looked at several ways of modelling the unequal variance, e.g., increasing with DML, 
varying by month. Neither of these seemed to completely describe the variance pattern we 
were seeing. 
library(nlme) 
model1REML <- gls(Testisweight ~ DML, data = Squid, method = "REML") 
model2REML = gls(Testisweight ~ DML, data = Squid, weights = varFixed(~DML), method 
= "REML") 
model3REML <- gls(Testisweight ~ DML, data = Squid, varIdent(form = ~1 | MONTH), me
thod = "REML") 
par(mfrow=c(1,3)) 
plot(model1REML); plot(model2REML); plot(model3REML) 

 

So let’s trying something crazy: letting the variances increase with DML, perhaps differently 
(with a different power) for each month: 
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𝑉𝑎𝑟(𝜖𝑖) = 𝜎2(𝐷𝑀𝐿𝛿𝑗)
2

library(nlme) 
vfbymonth <- varPower(form = ~ DML | MONTH)  #Don't use with quantitative predictor
s that can equal zero 
model4REML <-  gls(Testisweight ~ DML, data = Squid, weights = vfbymonth) #default 
is REML 
summary(model4REML) 
Generalized least squares fit by REML 
  Model: Testisweight ~ DML 
  Data: Squid 
 AIC  BIC logLik 

  3694 3764  -1832 

Variance function: 
 Structure: Power of variance covariate, different strata 
 Formula: ~DML | MONTH 
 Parameter estimates: 

 2  9  12  11  8  10  5  7  6  4  1  3 
1.624 1.675 1.667 1.643 1.731 1.652 1.642 1.710 1.699 1.591 1.617 1.602 

Coefficients: 
 Value Std.Error t-value p-value 

(Intercept) -3.986  0.24185  -16.48  0 
DML  0.037  0.00124  29.69  0 

 Correlation: 
 (Intr) 

DML -0.956 

Standardized residuals: 
 Min  Q1  Med  Q3  Max 

-2.46793 -0.97112 -0.09893  0.77226  3.07010

Residual standard error: 0.0003004 
Degrees of freedom: 768 total; 766 residual 
library(nlraa) 
head(Squid, 5) 
  Specimen YEAR MONTH DML Testisweight 
1  1017 1991  2 136  0.006 
2  1034 1990  9 144  0.008 
3  1070 1990  12 108  0.008 
4  1070 1990  11 130  0.011 
5  1019 1990  8 121  0.012 
vcmatrix4 = nlraa::var_cov(model4REML); vcmatrix4[1:5, 1:5] 

 [,1]  [,2]  [,3]  [,4] [,5] 
[1,] 0.7708 0.000 0.0000 0.0000 0.00 
[2,] 0.0000 1.537 0.0000 0.0000 0.00 
[3,] 0.0000 0.000 0.5431 0.0000 0.00 
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[4,] 0.0000 0.000 0.0000 0.7993 0.00 
[5,] 0.0000 0.000 0.0000 0.0000 1.46 
plot(model4REML) 

 
anova(model1REML, model2REML, model3REML, model4REML) 
           Model df  AIC  BIC logLik   Test L.Ratio p-value 
model1REML     1  3 4055 4069  -2024                        
model2REML     2  3 3886 3900  -1940                        
model3REML     3 14 4012 4077  -1992 2 vs 3   104.6  <.0001 
model4REML     4 15 3694 3764  -1832 3 vs 4   320.4  <.0001 

(a) How many parameters are being estimated in this model? what do the parameter 
estimates at the bottom represent? Can you verify Squid 1’s estimated variance? 
  Specimen YEAR MONTH DML Testisweight 
1     1017 1991     2 136        0.006 

15: interept, slope, sigma, and 12 powers. The parameter estimates are the powers on the residual 
standard error for each month. Squid 1 had DML 136 in Month 2 and the estimated residual standard 
error is .003004 so the estimated standard deviation for Squid 1 is .0003004*136^1.6244 = .8778 
which we then square to convert to variance .87785^2 = .7706. 

(b) Has the residual plot improved? Are the additional parameter estimates statistically 
significant? Is the last likelihood ratio test appropriate? 

The standardized residuals vs. fitted values is now beautiful. The likelihood ratio test gives a very small 
p-value comparing model 4 to model 3. Not technically nested but does have a different df value and is 
informative. 

For fun: 

#install.packages("stargazer") 
library(stargazer) 
stargazer(model1REML, model2REML, model3REML, model4REML, type = "text") 
 
=============================================================== 
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                                Dependent variable:             
                    ------------------------------------------- 
                                   Testisweight                 
                       (1)        (2)        (3)        (4)     
--------------------------------------------------------------- 
DML                  0.047***   0.043***   0.044***   0.037***  
                     (0.001)    (0.001)    (0.001)    (0.001)   
                                                                
Constant            -6.534***  -5.624***  -5.421***  -3.986***  
                     (0.393)    (0.338)    (0.344)    (0.242)   
                                                                
--------------------------------------------------------------- 
Observations           768        768        768        768     
Log Likelihood      -2,025.000 -1,940.000 -1,992.000 -1,832.000 
Akaike Inf. Crit.   4,055.000  3,886.000  4,012.000  3,694.000  
Bayesian Inf. Crit. 4,069.000  3,900.000  4,077.000  3,764.000  
=============================================================== 
Note:                               *p<0.1; **p<0.05; ***p<0.01 

Example 1: Pace of Life 

Recall our pace of life data 
PaceData = read.table("https://www.rossmanchance.com/stat414/data/Pace.txt", header
=TRUE) 
head(PaceData) 
             City Heart Walk Talk Bank Watch    Region 
1       Boston,MA    24   28   24   31    30 Northeast 
2      Buffalo,NY    29   23   23   30    33 Northeast 
3      NewYork,NY    31   24   18   29    32 Northeast 
4 SaltLakeCity,UT    26   28   23   28    23      West 
5     Columbus,OH    26   22   30   27    23   Midwest 
6    Worcester,MA    20   25   24   26    27 Northeast 

Suppose I want to see whether the heart disease appears to differ significantly by region of the 
country (on average). 
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))  
iscamsummary(PaceData$Heart) 
  Missing  n Min Q1 Median Q3 Max  Mean    SD Skewness 
1       0 36  11 16     19 24  31 19.81 5.214    0.156 
iscamsummary(PaceData$Heart, PaceData$Region) 
          Missing n Min Q1 Median Q3 Max  Mean    SD Skewness 
Midwest         0 9  13 20     21 24  26 21.44 4.126   -0.756 
Northeast       0 9  14 18     20 26  31 22.00 5.788    0.279 
South           0 9  14 16     19 23  27 19.67 4.528    0.350 
West            0 9  11 11     16 18  26 16.11 4.910    0.675 

(a) How would you suggest answering this question? 
An ‘Analysis of Variance’ can be used to find a p-value to compare the means across the four regions. 
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(b) Carry out your analysis and summarize your conclusion. 

summary(modela <- aov(PaceData$Heart ~ PaceData$Region)) 
                Df Sum Sq Mean Sq F value Pr(>F)   
PaceData$Region  3    191    63.5    2.67  0.064 . 
Residuals       32    761    23.8                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Let 𝜇𝑖 represent the population mean heart disease rate across all cities in the same region. 
𝐻0: 𝜇𝑚𝑖𝑑𝑤𝑒𝑠𝑡 = 𝜇𝑛𝑜𝑟𝑡ℎ𝑒𝑎𝑠𝑡 = 𝜇𝑠𝑜𝑢𝑡ℎ = 𝜇𝑤𝑒𝑠𝑡 vs. 𝐻𝑎: at least one 𝜇 differs from the others. 
With a test statistic of 𝐹 = 2.67 with degrees of freedom 3 and 27, we find a p-value of 0.0641, giving 
us weak evidence against the null hypothesis and in favor of the alternative hypothesis. 

(c) Could we fit a basic regression model for this relationship? If not, why not? If so, 
how? 

We have to convert the categorical variable into binary, numeric variables so we can fit lines between 
pairs of points. We will want to compare 3 pairs, if all 3 pairs are equal, then the means are the same. 

How does R fit the model? 

summary(model1 <- lm(Heart ~ Region, data = PaceData)) 
 
Call: 
lm(formula = Heart ~ Region, data = PaceData) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-8.444 -3.750 -0.556  3.000  9.889  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)     
(Intercept)       21.444      1.626   13.19  1.7e-14 *** 
RegionNortheast    0.556      2.299    0.24    0.811     
RegionSouth       -1.778      2.299   -0.77    0.445     
RegionWest        -5.333      2.299   -2.32    0.027 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 4.88 on 32 degrees of freedom 
Multiple R-squared:   0.2,  Adjusted R-squared:  0.125  
F-statistic: 2.67 on 3 and 32 DF,  p-value: 0.0641 
logLik(model1) 
'log Lik.' -106 (df=5) 
anova(model1) 
Analysis of Variance Table 
 
Response: Heart 
          Df Sum Sq Mean Sq F value Pr(>F)   
Region     3    191    63.5    2.67  0.064 . 
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Residuals 32    761    23.8                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(d) How many parameters are estimated by the model? What are they? How do the 
ANOVA tables compare? 
We have estimated an intercept, a coefficient for NE, a coefficient for S, and a coefficient for W. The 𝐹 
statistic and p-value for the overall F-test are the same. The null hypothesis is 𝐻0: 𝛽𝑁𝐸 = 𝛽𝑆 = 𝛽𝑊 = 0. 
We recognize 21.44 as the mean for the Midwest, so R’s default is to use indicator coding: the 
intercept estimates the mean for ‘reference group’ and the other coefficients estimate differences 
between that region’s mean and the reference region’s mean. For exmaple, 0.5556, tells us that the NE 
mean is 0.5556 larger than the MW mean = 0.56 + 21.44 = 22.0. 

Convince R to use “effect coding” instead. 

summary(model1b <- lm(Heart ~ Region, data = PaceData,  
                      contrasts=list(Region = contr.sum))) # vs. contr.treatment 
 
Call: 
lm(formula = Heart ~ Region, data = PaceData, contrasts = list(Region = contr.sum)) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-8.444 -3.750 -0.556  3.000  9.889  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   19.806      0.813   24.37   <2e-16 *** 
Region1        1.639      1.408    1.16     0.25     
Region2        2.194      1.408    1.56     0.13     
Region3       -0.139      1.408   -0.10     0.92     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 4.88 on 32 degrees of freedom 
Multiple R-squared:   0.2,  Adjusted R-squared:  0.125  
F-statistic: 2.67 on 3 and 32 DF,  p-value: 0.0641 

(e) What is the difference between “indicator coding” and “effect coding”? 
Now the intercept represents the overall average 19.86 and the coefficients represent the difference 
between the region and the overall average. For example, Region 1’s group mean is 19.81 + 1.64 = 
21.45, so that’s the Midwest. 

(f) Why doesn’t R give us all four regions?? 

Because the four coefficients must sum to zero so if we know the values of 3 of them, then we know 
the value of the 4th. 

(g) Which type of coding is better? 
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They are equivalent! Rather than one being better than another/they ultimately give you the same 
information, the exact same fit etc. Sometimes a research question might be more quickly answered 
with one than the other but you can always go back and forth between them. 

(h) What do the t-tests tell you in each case? 

With indicator coding, the t-test for a slope coefficient tells you whether the associated group mean is 
significantly different from the reference group mean. With effect coding, the t-test for a slope 
coefficient tells you whether the associated group mean is significantly different from the ‘overall 
mean’. 

(i) Do the model assumptions appear to be met? (What are the model assumptions?) 

Still check for equal variance of the responses in the groups, normality of the responses in each group 
and independent observations (just don’t really have a ‘Linear’ check. 

(j) An ‘advantage’ to the regression model is automatic reporting of 𝑅2. What is the 𝑅2 
value for each model and how is it interpreted? 

𝑅2 = .2002, so about 20% of the variability in the heart disease rates is explained by which region the 
city is in. 

More ANOVA table details 

(a) Complete the handout providing the sum of squares formulas for the ANOVA table. 

(b) So what does an ANOVA F-test compare? 

The F-statistic is the ratio between the variability among the groups and the within group variability - 
how many times larger is the variability among the groups than the within group variability. 

Definition 

• When only comparing group means, the coefficient of determination is also referred to by 
some disciplines as 𝜂2, eta-squared. 

• Despite the popularity and wide-use of this statistic, it is a biased estimator of the population 

value. Another measure is 
𝑆𝑆𝑔𝑟𝑜𝑢𝑝𝑠−𝑑𝑓(𝑔𝑟𝑜𝑢𝑝𝑠)∗𝑀𝑆𝐸𝑟𝑟𝑜𝑟

𝑆𝑆𝑇𝑜𝑡𝑎𝑙+𝑀𝑆𝐸𝑟𝑟𝑜𝑟
, (omega-squared) 

These are considered two different measures of “effect size.” 

(c) Calculate the Omega-squared value. 

summary(modela) 
                Df Sum Sq Mean Sq F value Pr(>F)   
PaceData$Region  3    191    63.5    2.67  0.064 . 
Residuals       32    761    23.8                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(190.5 - 3*(23.78))/(190.5 + 761.1 + 23.78) = 0.122 
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Verify with R 

#install.packages("effectsize") 
library(effectsize) 
omega_squared(model1b) 
# Effect Size for ANOVA 
 
Parameter | Omega2 |       95% CI 
--------------------------------- 
Region    |   0.12 | [0.00, 1.00] 
 
- One-sided CIs: upper bound fixed at [1.00]. 

(d) What is meant by effect size? Why is it important information? 
Effect sizes are measures of ‘how big is the effect’ or ‘how large (collectively) are the differences.’ 
Rather than only using the p-value, they help us judge the ‘practical significance’ of the results. 

Verify the ICC in R 

#install.packages("ICC") 
ICC::ICCbare(x = Region, y = Heart, data = PaceData) 
[1] 0.1565 

Computer Problem 5 - due Wednesday 7am 

(You are encouraged to work with a partner and turn in one submission with both 
names) 

A study by Foa et al. (1991) in the Journal of Counseling and Clinical Psychology looked at a 
study of 45 crime victims dealing with post traumatic stress disorder who were randomly 
assigned to one of four groups: 1) Stress Inoculation Therapy (SIT) in which subjects were 
taught a variety of coping skills; 2) Prolonged Exposure (PE) in which subjects reviewed the 
event in their mind repeatedly for seven sessions; 3) Supportive Counseling (SC) which was a 
standard therapy control group; and 4) a Waiting List (WL) control (no treatment). In this 
example, you will look at post-treatment data on PTSD Severity, the total number of symptoms 
endorsed by the subject. 

foadata <-read.table("http://www.rossmanchance.com/stat414/data/foa.txt",header=T) 
head(foadata) 
  ID Treatment Score 
1  1         1     3 
2  2         1    13 
3  3         1    13 
4  4         1     8 
5  5         1    11 
6  6         1     9 
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))  
#if the above doesn't work, try load(url("https://www.rossmanchance.com/iscam3/ISCA
M.RData")) 

(a) Find the overall mean PTSD score for this sample. 
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(b) Use the iscamsummary function to see the basic descriptive statistics for each treatment 
group. Include your output. 

(c) Find a linear regression model using only the treatment variable, what’s the problem? How 
did you spot it? 

Convert the Group variable to a factor, and make the control treatment the reference group: 
GroupF = factor(foadata$Group, levels = c(4, 1, 2, 3)) 

(d) Convert the Group variable to a factor, and now fit the linear regression model with the 
treatment variable, using effect coding. (i) Interpret the intercept. Is it the same as your 
answer to (a)? (ii) Interpret one of the slope coefficients in context. 

(e) Rerun the model using indicator coding and tell me which treatments appear significantly 
different from the control treatment. (Include relevant output, be clear how you are 
deciding.) 




