Fall, 2025 Wednesday, Sept. 24

Stat 414 — Day 2

Estimating Linear Models

«  Multilevel data is when the structure of the data is characterized by “observational units” at
different levels, often from clustering or nesting in the data (e.g., students nested in
classrooms)

*  Multilevel data needs to be analyzed differently from single level data

Example 1: Predicting airfare cont

price distance city
632 2604 JacksonvilleFlorida
339 850 SaltLakeCityUtah
628 2590 CharlotteNorthCarolina
353 673 TucsonArizona
700 2370 JacksonMississippi
471 1990 StLouisMissouri
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Scatterplot airfare prices vs. distance
(a) Does it seem reasonable to fit a linear model to these data? How are you deciding?

The overall pattern seems to have a reasonably constant rate of increase in price as distance increases.
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Least Squares Estimation

The least squares regression model fits the best fitting line by minimizing the sum of the
squared residuals.
modell = lm(price ~ distance, data=airfare); modell

Call:
Im(formula = price ~ distance, data = airfare)

Coefficients:
(Intercept) distance
214.994 0.142
with(airfare, plot(price ~ distance)); abline(modell, col = "red")
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plot of price vs. distance with OLS line overlaid
A few R tricks

Check out this cool trick
coefs <- coef(modell)

The intercept of the regression is 214.99 and the slope of the regression is 0.14.
In fact, many times in R we only want to see some of the output, e.g.,

summary(modell)$r.squared
[1]10.64

summary(modell)$sigma
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[1] 83

A key metric of “model fit” is the sum of the squared residuals. The residual standard error is
the square root of the mean squared error, X(y; — 9;,)?/(n — 2)
sgrt(sum(residuals(modell)~2/(10)))

[1] 83
Interpreting the model

(b) How should we interpret the intercept, slope, R?, and ¢ values?

R? says 63.9% of the variation in prices from SLO is explained by the distance from SLO. /n intercept =
214.99 dollars = predicted price when distance is zero (‘set-up cost’) /n slope = .14 dolaars per mile =
for each one mile increase in distance there is an associated/predict/on average with an .14 dollar
increase in price of flight /n 83.46 dollars = typical error between observed price and predicted prices

/n
Evaluating the model

One way to evaluate the linear model is to fit a more complicated model and see how much
better it fits the data.

#Add a quadratic term to the model. Use the I() function to square the variable bef
ore running the model

model2 <- 1lm(price ~ distance + I(distance”2), data = airfare)

model2

Call:
Im(formula = price ~ distance + I(distance”2), data = airfare)

Coefficients:
(Intercept) distance I(distance”2)
2.82e+02 5.24e-02 2.52e-05
summary(model2)$r.squared
[1] 0.65
sigma(model2)
[1] 87

(c) Based on the output, what is the impact of the quadratic term? Is this a better fitting
model? How are you deciding?

now have a slight upward curve in the prices as distances increases. Better fitting in term sof R? but
only slightly.

Always a good habit to examine the model behavior visually as well!

#install.packages("tidyverse")
#library(tidyverse)
airfare |>
ggplot(aes(x = distance, y = price)) +
geom_point() +
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geom_line(aes(x = distance, y = model2$fitted.values), color = "blue") +
labs(title = "Model2") +
theme_bw()
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Scatterplot of prices vs. distance with OLS line overlaid

(d) Would you consider this a meaningfully different model? Worth the extra
complication in interpreting the model?

only a slight increase in R%, maybe not worth the extra complication.

Definition

Adjusted R? penalizes the model for requiring estimation of additional parameters.

Compare the R? values for the two models.

summary(modell)$adj.r.squared
[1] 0.6
summary(model2)$adj.r.squared
[1]10.57

(e) Which model would you recommend and why?
Model 1, higher R? adjusted but | would be willing to hear both arguments

Maximum Likelihood Estimation

Maximum likelihood estimation estimates the parameters to maximize the likelihood of seeing
your data.
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#install.packages("nlme")
library(nlme)

Attaching package: 'nlme’
The following object is masked from 'package:dplyr":

collapse
modellML <- nlme::gls(price ~ distance, data = airfare, method = "ML")
modell1ML
Generalized least squares fit by maximum likelihood
Model: price ~ distance
Data: airfare
Log-likelihood: -69

Coefficients:
(Intercept) distance
214.99 0.14

Degrees of freedom: 12 total; 10 residual
Residual standard error: 76

(f) How have the estimated values for the intercept and slope changed?
They did not!

Note that a key metric in this output is the value of the log-likelihood when the estimated
values are substituted back into the likelihood function. This metric essentially replaces the
sum of squared errors in comparing models.

So what about the estimate of o7

logLik(modellML)
'log Lik."' -69 (df=3)
sigma(modellML)
[1] 76

(g) How has the estimated value for o changed from the least squares model?
OLS gave us sigma-hat = 86, MLE gave us sigma-hat = 76.2 which is smaller. Will talk more about this
soon.

Likelihood estimation also includes a mechanism for “penalizing” your fit statistics based on the
number of parameters being estimated (akin to adjusted R?)

AIC(modellML) #-2 x log-likelihood + 2p, p = number of parameters in the model
[1] 144

BIC(modellML) #-2 x log-Llikelihood + p x Ln(n)

[1] 146

(h) Do we want large values or small values for these?
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smaller
Statistical Inference

So far we haven't really made any assumptions other than having a linear relationship between
Y and X. The LINE or FINE assumptions you are used to caring so much about are really
needed for p-values and confidence intervals.

The Basic Regression Model (Least Squares) simple: E(Y;) = B, + f1x; + €; where the ¢; are
assumed to be normally distribution with mean E(¢;) = 0 and variance V (¢;) = o2.

Errers gré assumed 10 have constant vanance and r onmaty
distributed

Basic Regression Model
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