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Stat 414 — Day 2 
Estimating Linear Models 

Last Time 
• Multilevel data is when the structure of the data is characterized by “observational units” at 

different levels, often from clustering or nesting in the data (e.g., students nested in 
classrooms) 

• Multilevel data needs to be analyzed differently from single level data 

Example 1: Predicting airfare cont 
  price distance                   city 
1   632     2604    JacksonvilleFlorida 
2   339      850       SaltLakeCityUtah 
3   628     2590 CharlotteNorthCarolina 
4   353      673          TucsonArizona 
5   700     2370     JacksonMississippi 
6   471     1990        StLouisMissouri 

 
Scatterplot airfare prices vs. distance 

(a) Does it seem reasonable to fit a linear model to these data? How are you deciding? 

The overall pattern seems to have a reasonably constant rate of increase in price as distance increases. 
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Least Squares Estimation 

The least squares regression model fits the best fitting line by minimizing the sum of the 
squared residuals. 
model1 = lm(price ~ distance, data=airfare); model1 
 
Call: 
lm(formula = price ~ distance, data = airfare) 
 
Coefficients: 
(Intercept)     distance   
    214.994        0.142   
with(airfare, plot(price ~ distance)); abline(model1, col = "red") 

 
plot of price vs. distance with OLS line overlaid 

A few R tricks 

Check out this cool trick 
coefs <- coef(model1) 

The intercept of the regression is 214.99 and the slope of the regression is 0.14. 

In fact, many times in R we only want to see some of the output, e.g., 

summary(model1)$r.squared 
[1] 0.64 
summary(model1)$sigma 
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[1] 83 

A key metric of “model fit” is the sum of the squared residuals. The residual standard error is 
the square root of the mean squared error, 𝛴𝛴(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2/(𝑛𝑛 − 2) 
sqrt(sum(residuals(model1)^2/(10))) 
[1] 83 

Interpreting the model 

(b) How should we interpret the intercept, slope, 𝑅𝑅2, and 𝜎𝜎 values? 
𝑅𝑅2 says 63.9% of the variation in prices from SLO is explained by the distance from SLO. /n intercept = 
214.99 dollars = predicted price when distance is zero (‘set-up cost’) /n slope = .14 dolaars per mile = 
for each one mile increase in distance there is an associated/predict/on average with an .14 dollar 
increase in price of flight /n 83.46 dollars = typical error between observed price and predicted prices 
/n 

Evaluating the model 

One way to evaluate the linear model is to fit a more complicated model and see how much 
better it fits the data. 
#Add a quadratic term to the model. Use the I() function to square the variable bef
ore running the model 
model2 <- lm(price ~ distance + I(distance^2), data = airfare) 
model2 
 
Call: 
lm(formula = price ~ distance + I(distance^2), data = airfare) 
 
Coefficients: 
  (Intercept)       distance  I(distance^2)   
     2.82e+02       5.24e-02       2.52e-05   
summary(model2)$r.squared 
[1] 0.65 
sigma(model2) 
[1] 87 

(c) Based on the output, what is the impact of the quadratic term? Is this a better fitting 
model? How are you deciding? 
now have a slight upward curve in the prices as distances increases. Better fitting in term sof 𝑅𝑅2 but 
only slightly. 

Always a good habit to examine the model behavior visually as well! 

#install.packages("tidyverse") 
#library(tidyverse) 
airfare |> 
  ggplot(aes(x = distance, y = price)) + 
  geom_point() + 
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  geom_line(aes(x = distance, y = model2$fitted.values), color = "blue") + 
  labs(title = "Model2") + 
 theme_bw() 

 
Scatterplot of prices vs. distance with OLS line overlaid 

(d) Would you consider this a meaningfully different model? Worth the extra 
complication in interpreting the model? 

only a slight increase in 𝑅𝑅2, maybe not worth the extra complication. 

Definition 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 penalizes the model for requiring estimation of additional parameters. 

Compare the 𝑅𝑅2 values for the two models. 

summary(model1)$adj.r.squared 
[1] 0.6 
summary(model2)$adj.r.squared 
[1] 0.57 

(e) Which model would you recommend and why? 
Model 1, higher 𝑅𝑅2 adjusted but I would be willing to hear both arguments 

Maximum Likelihood Estimation 

Maximum likelihood estimation estimates the parameters to maximize the likelihood of seeing 
your data. 
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#install.packages("nlme") 
library(nlme) 
 
Attaching package: 'nlme' 
The following object is masked from 'package:dplyr': 
 
    collapse 
model1ML <- nlme::gls(price ~ distance, data = airfare, method = "ML") 
model1ML 
Generalized least squares fit by maximum likelihood 
  Model: price ~ distance  
  Data: airfare  
  Log-likelihood: -69 
 
Coefficients: 
(Intercept)    distance  
     214.99        0.14  
 
Degrees of freedom: 12 total; 10 residual 
Residual standard error: 76  

(f) How have the estimated values for the intercept and slope changed? 
They did not! 

Note that a key metric in this output is the value of the log-likelihood when the estimated 
values are substituted back into the likelihood function. This metric essentially replaces the 
sum of squared errors in comparing models. 

So what about the estimate of 𝜎𝜎? 

logLik(model1ML) 
'log Lik.' -69 (df=3) 
sigma(model1ML) 
[1] 76 

(g) How has the estimated value for 𝜎𝜎 changed from the least squares model? 
OLS gave us sigma-hat = 86, MLE gave us sigma-hat = 76.2 which is smaller. Will talk more about this 
soon. 

Likelihood estimation also includes a mechanism for “penalizing” your fit statistics based on the 
number of parameters being estimated (akin to 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2) 

AIC(model1ML)  #-2 x log-likelihood + 2p, p = number of parameters in the model 
[1] 144 
BIC(model1ML)  #-2 x log-likelihood + p x ln(n) 
[1] 146 

(h) Do we want large values or small values for these? 
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smaller 

Statistical Inference 

So far we haven’t really made any assumptions other than having a linear relationship between 
𝑌𝑌 and 𝑋𝑋. The LINE or FINE assumptions you are used to caring so much about are really 
needed for p-values and confidence intervals. 

The Basic Regression Model (Least Squares) simple: 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖 where the 𝜖𝜖𝑖𝑖 are 
assumed to be normally distribution with mean 𝐸𝐸(𝜖𝜖𝑖𝑖) = 0 and variance 𝑉𝑉(𝜖𝜖𝑖𝑖) = 𝜎𝜎2. 

 
Basic Regression Model 
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