

Stat 414 — Day 2

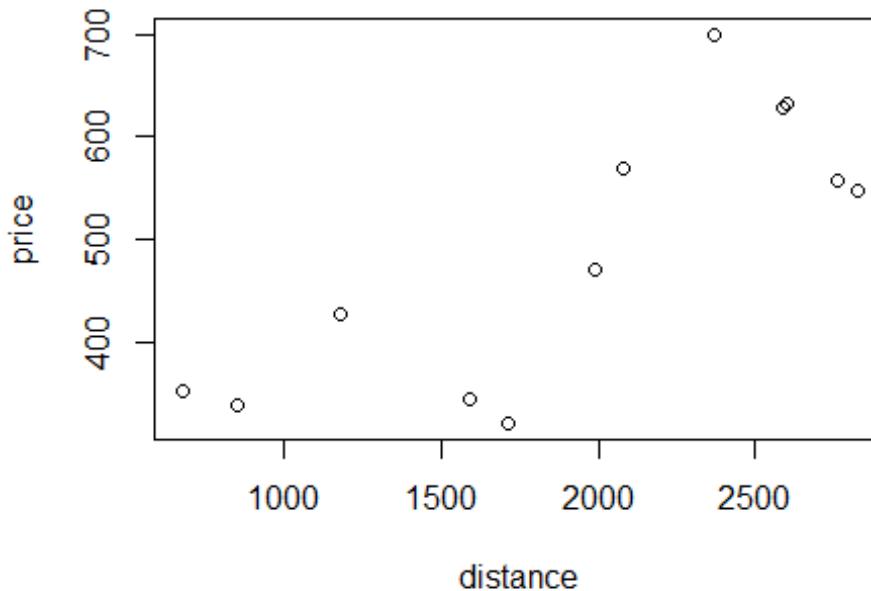
Estimating Linear Models

Last Time

- Multilevel data is when the structure of the data is characterized by “observational units” at different levels, often from clustering or nesting in the data (e.g., students nested in classrooms)
- Multilevel data needs to be analyzed differently from single level data

Example 1: Predicting airfare cont

	price	distance	city
1	632	2604	JacksonvilleFlorida
2	339	850	SaltLakeCityUtah
3	628	2590	CharlotteNorthCarolina
4	353	673	TucsonArizona
5	700	2370	JacksonMississippi
6	471	1990	StLouisMissouri



Scatterplot airfare prices vs. distance

(a) Does it seem reasonable to fit a linear model to these data? How are you deciding?

The overall pattern seems to have a reasonably constant rate of increase in price as distance increases.

Least Squares Estimation

The **least squares regression model** fits the best fitting line by minimizing the sum of the squared residuals.

```
model1 = lm(price ~ distance, data=airfare); model1
```

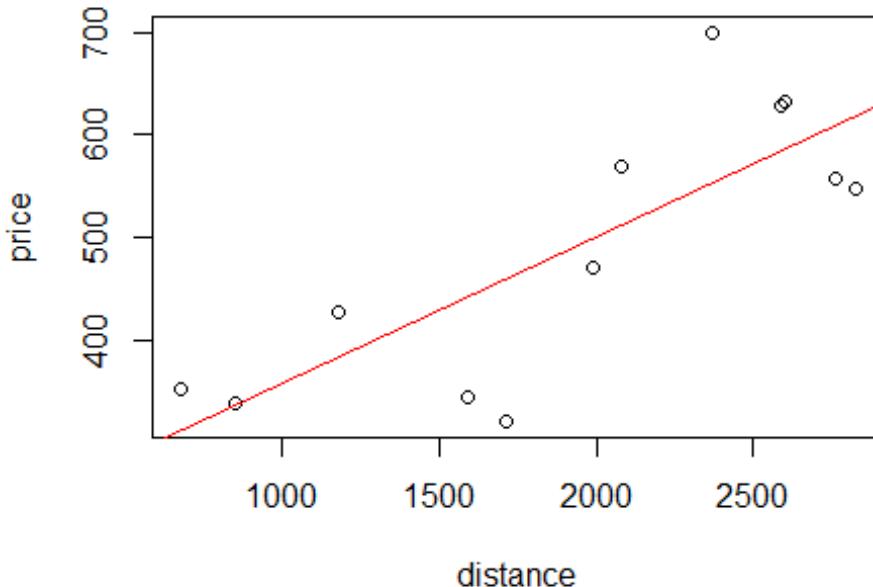
Call:

```
lm(formula = price ~ distance, data = airfare)
```

Coefficients:

```
(Intercept) distance
 214.994    0.142
```

```
with(airfare, plot(price ~ distance)); abline(model1, col = "red")
```



plot of price vs. distance with OLS line overlaid

A few R tricks

Check out this cool trick

```
coefs <- coef(model1)
```

The intercept of the regression is 214.99 and the slope of the regression is 0.14.

In fact, many times in R we only want to see some of the output, e.g.,

```
summary(model1)$r.squared
```

```
[1] 0.64
```

```
summary(model1)$sigma
```

```
[1] 83
```

A key metric of “model fit” is the sum of the squared residuals. The residual standard error is the square root of the mean squared error, $\Sigma(y_i - \hat{y}_i)^2/(n - 2)$

```
sqrt(sum(residuals(model1)^2/(10)))
```

```
[1] 83
```

Interpreting the model

(b) How should we interpret the intercept, slope, R^2 , and σ values?

R^2 says 63.9% of the variation in prices from SLO is explained by the distance from SLO. /n intercept = 214.99 dollars = predicted price when distance is zero ('set-up cost') /n slope = .14 dolaars per mile = for each one mile increase in distance there is an associated/predict/on average with an .14 dollar increase in price of flight /n 83.46 dollars = typical error between observed price and predicted prices /n

Evaluating the model

One way to evaluate the linear model is to fit a more complicated model and see how much better it fits the data.

#Add a quadratic term to the model. Use the *I()* function to square the variable before running the model

```
model12 <- lm(price ~ distance + I(distance^2), data = airfare)
model12
```

Call:

```
lm(formula = price ~ distance + I(distance^2), data = airfare)
```

Coefficients:

(Intercept)	distance	I(distance^2)
2.82e+02	5.24e-02	2.52e-05

```
summary(model12)$r.squared
```

```
[1] 0.65
```

```
sigma(model12)
```

```
[1] 87
```

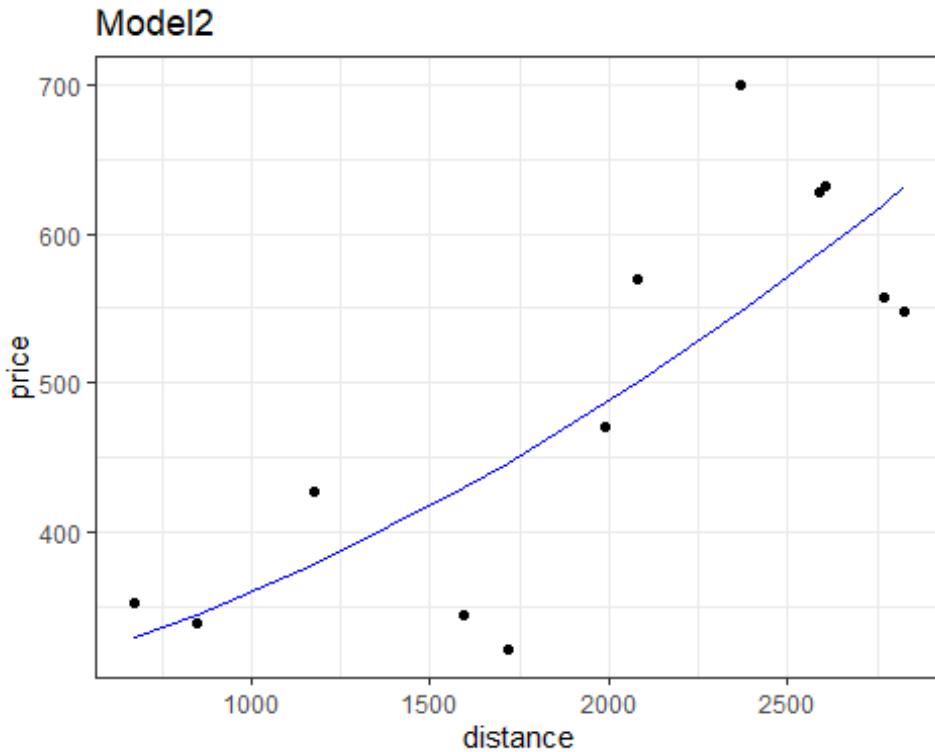
(c) Based on the output, what is the impact of the quadratic term? Is this a better fitting model? How are you deciding?

now have a slight upward curve in the prices as distances increases. Better fitting in term of R^2 but only slightly.

Always a good habit to examine the model behavior visually as well!

```
#install.packages("tidyverse")
#library(tidyverse)
airfare |>
  ggplot(aes(x = distance, y = price)) +
  geom_point() +
```

```
geom_line(aes(x = distance, y = model2$fitted.values), color = "blue") +
  labs(title = "Model2") +
  theme_bw()
```



Scatterplot of prices vs. distance with OLS line overlaid

(d) Would you consider this a meaningfully different model? Worth the extra complication in interpreting the model?

only a slight increase in R^2 , maybe not worth the extra complication.

Definition

Adjusted R^2 penalizes the model for requiring estimation of additional parameters.

Compare the R^2 values for the two models.

```
summary(model1)$adj.r.squared
[1] 0.6
summary(model2)$adj.r.squared
[1] 0.57
```

(e) Which model would you recommend and why?

Model 1, higher R^2 adjusted but I would be willing to hear both arguments

Maximum Likelihood Estimation

Maximum likelihood estimation estimates the parameters to maximize the likelihood of seeing your data.

```
#install.packages("nlme")
library(nlme)
```

Attaching package: 'nlme'
The following object is masked from 'package:dplyr':

```
collapse
model1ML <- nlme::gls(price ~ distance, data = airfare, method = "ML")
model1ML
Generalized least squares fit by maximum likelihood
  Model: price ~ distance
  Data: airfare
  Log-likelihood: -69
```

Coefficients:
 (Intercept) distance
 214.99 0.14

Degrees of freedom: 12 total; 10 residual
Residual standard error: 76

(f) How have the estimated values for the intercept and slope changed?
They did not!

Note that a key metric in this output is the value of the log-likelihood when the estimated values are substituted back into the likelihood function. This metric essentially replaces the sum of squared errors in comparing models.

So what about the estimate of σ ?

```
logLik(model1ML)
'log Lik.' -69 (df=3)
sigma(model1ML)
[1] 76
```

(g) How has the estimated value for σ changed from the least squares model?
OLS gave us $\sigma_{\text{hat}} = 86$, MLE gave us $\sigma_{\text{hat}} = 76.2$ which is smaller. Will talk more about this soon.

Likelihood estimation also includes a mechanism for “penalizing” your fit statistics based on the number of parameters being estimated (akin to *adjusted R²*)

```
AIC(model1ML)  #-2 x Log-Likelihood + 2p, p = number of parameters in the model
[1] 144
BIC(model1ML)  #-2 x Log-Likelihood + p x ln(n)
[1] 146
```

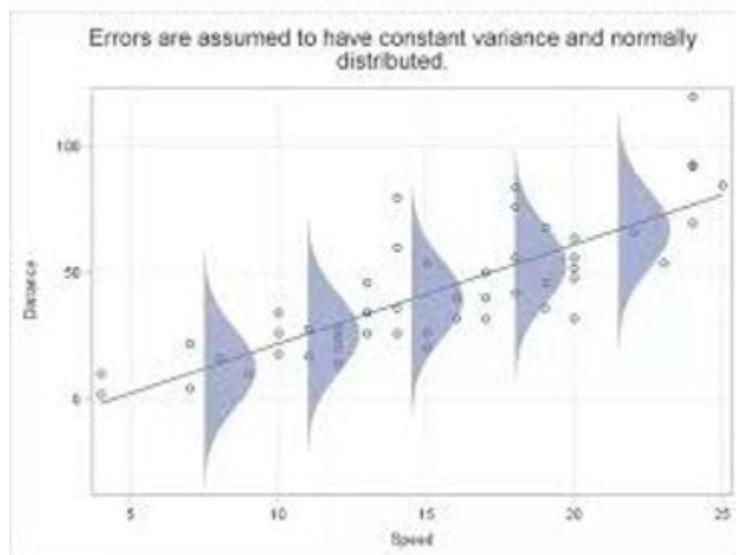
(h) Do we want large values or small values for these?

smaller

Statistical Inference

So far we haven't really made any assumptions other than having a linear relationship between Y and X . The LINE or FINE assumptions you are used to caring so much about are really needed for p-values and confidence intervals.

The **Basic Regression Model** (Least Squares) simple: $E(Y_i) = \beta_0 + \beta_1 x_i + \epsilon_i$ where the ϵ_i are assumed to be normally distribution with mean $E(\epsilon_i) = 0$ and variance $V(\epsilon_i) = \sigma^2$.



Basic Regression Model