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Stat 414 - Day 17 
Three-level models (4.9) 

Last Time: Using AR(1) structure at Level 1 

• With longitudinal data, may want to also consider alternative correlation structures for the 
Level 1 residuals 

• AR(1) assumes 𝜖𝑖𝑗 = 𝜌𝜖(𝑖−1)𝑗 + 𝑣𝑖𝑗 which models 𝑐𝑜𝑟(𝜖𝑖𝑗 , 𝜖(𝑖−1)𝑗) = 𝜌 but still assumes 

equal variance 𝜎2. 

• 𝑣𝑎𝑟(𝑦𝑖𝑗) = 𝜏0
2 + 𝜎2 

• 𝑐𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑘𝑗) = 𝜏0
2 + 𝜌|𝑖−𝑘|𝜎2 

• Three-level models 

Example 1: Case Study (from Finch, Bolin, & Kelly) 

Data were collected to predict reading achievement for 10,903 third-grade students nested 
within 568 classrooms nested within 160 schools (achieve.txt). 
achieve = read.table("https://www.rossmanchance.com/stat414F20/data/Achieve.txt" , 
header=TRUE) 
# I have reason to believe gender = 1 is female and gender = 2 is male 

Unconditional means model 

Fit the unconditional means three-level (null) model, putting the higher level first to see how 
much variation is at each level. 
#library(lme4) 
summary(model0 <- lmer(geread~ (1|school/class), data = achieve, REML = F)) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: geread ~ (1 | school/class) 
   Data: achieve 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    46150     46179    -23071     46142     10316  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-2.305 -0.629 -0.210  0.304  3.867  
 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 class:school (Intercept) 0.273    0.522    
 school       (Intercept) 0.309    0.556    
 Residual                 4.847    2.202    
Number of obs: 10320, groups:  class:school, 568; school, 160 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   4.3081     0.0548    78.6 
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#model0b <- lme(geread ~ 1, random = ~1 | school/class, data = achieve, method="ML"
) 
#summary(model0b) 

(a) How many parameters are in this model? How do you interpret them? 
4: overall intercept, sigma, class intercept variance, school intercept variance 

What if we try 

summary(lmer(geread~ (1|school) + (1 |class), data = achieve)) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ (1 | school) + (1 | class) 
   Data: achieve 
 
REML criterion at convergence: 46267 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-2.294 -0.636 -0.214  0.285  3.886  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 school   (Intercept) 0.3906   0.6250   
 class    (Intercept) 0.0052   0.0721   
 Residual             5.0424   2.2455   
Number of obs: 10320, groups:  school, 160; class, 8 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   4.3301     0.0642    67.5 

(b) What is the issue? How can we “fix” this? 
  Code 

achieve$school_class <- paste(achieve$school,"_", achieve$class) 
summary(model1 <- lmer(geread~ (1|school) + (1 |school_class), data = achieve)) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ (1 | school) + (1 | school_class) 
   Data: achieve 
 
REML criterion at convergence: 46146 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-2.305 -0.629 -0.209  0.305  3.867  
 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 school_class (Intercept) 0.273    0.522    
 school       (Intercept) 0.312    0.558    
 Residual                 4.847    2.202    
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Number of obs: 10320, groups:  school_class, 568; school, 160 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    4.308      0.055    78.3 

(c) What percentage of the total variation is at each level? (VPC = variance partitioning 
coefficient) 

  Code 
#don't be fooled by the name! 
performance::icc(model1, by_group=TRUE) 
# ICC by Group 
 
Group        |   ICC 
-------------------- 
school_class | 0.050 
school       | 0.057 
#The largest source of variation in the scores is among students in the same clas
s. 

(d) What do you learn from the following? 
model1 = lmer(geread~ (1|corp/school/class), data = achieve, REML = F) 
summary(model1) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: geread ~ (1 | corp/school/class) 
   Data: achieve 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    46110     46146    -23050     46100     10315  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-2.299 -0.631 -0.213  0.303  3.944  
 
Random effects: 
 Groups            Name        Variance Std.Dev. 
 class:school:corp (Intercept) 0.2754   0.525    
 school:corp       (Intercept) 0.0869   0.295    
 corp              (Intercept) 0.1734   0.416    
 Residual                      4.8470   2.202    
Number of obs: 10320, groups:   
class:school:corp, 568; school:corp, 160; corp, 59 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   4.3258     0.0715    60.5 
anova(model1, model0) 
Data: achieve 
Models: 
model0: geread ~ (1 | school/class) 
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model1: geread ~ (1 | corp/school/class) 
       npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)     
model0    4 46150 46179 -23071     46142                         
model1    5 46110 46146 -23050     46100  42.2  1    8.1e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
#confint(model1) 

Variation in intercepts across corp (think school district) also appears to be meaningful. 

(e) What do you learn from the following? (Better fitting model? Any of the variables 
significant? Variance explained? Do signs of coefficients make sense? (gevocab = 
student vocabulary scores, clenroll = size of the student’s reading class, cenrol = size of the 
student’s school) 

summary(model2 <- lmer(geread ~ gevocab + clenroll + cenroll + (1 | school/class), 
data = achieve, REML = F), corr=FALSE ) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: geread ~ gevocab + clenroll + cenroll + (1 | school/class) 
   Data: achieve 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    43101     43152    -21544     43087     10313  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.220 -0.568 -0.208  0.319  4.473  
 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 class:school (Intercept) 0.0902   0.300    
 school       (Intercept) 0.0739   0.272    
 Residual                 3.6975   1.923    
Number of obs: 10320, groups:  class:school, 568; school, 160 
 
Fixed effects: 
               Estimate  Std. Error t value 
(Intercept)  1.67617679  0.20694549    8.10 
gevocab      0.50773055  0.00842293   60.28 
clenroll     0.01890214  0.00950530    1.99 
cenroll     -0.00000371  0.00000361   -1.03 
fit warnings: 
Some predictor variables are on very different scales: consider rescaling 
anova(model2, model0) 
Data: achieve 
Models: 
model0: geread ~ (1 | school/class) 
model2: geread ~ gevocab + clenroll + cenroll + (1 | school/class) 
       npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)     
model0    4 46150 46179 -23071     46142                         
model2    7 43101 43152 -21544     43087  3055  3     <2e-16 *** 
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
#confint(model2) 
 
#performance::r2(model2, by_group= TRUE) 
m2 <- lmer(geread ~ gevocab + clenroll + cenroll + (1|school) + (1|school_class), d
ata = achieve) 
performance::r2(m2, by_group= TRUE) 
# Explained Variance by Level 
 
Level        |    R2 
-------------------- 
Level 1      | 0.237 
school       | 0.755 
school_class | 0.668 

The AIC has decreased (46150 to 43101) and the improvement in the model fit appears to be 
statistically significant (p-value from LRT < .0001). The student vocabulary scores (Level 1) and the 
students’ reading class (level 2) appear to be significant, after adjusting for the other variables, but the 
size of the school size does not (level 3). The negative coefficient on the size of the class may seem 
counter intuitive, but larger classes may also come with additional TA support. The model (compared 
to the null model) explains 23.7% of the variation at Level 1 (within class), (1 - .09016/0.2726) => 66.8% 
at the class level and 75.5% at the school level compared to the null model. (Note, we had to use the 
split up version to get these values for each level) 

(f) What do you learn from the following? 

summary(model3 <- lmer(geread ~ gevocab + clenroll + cenroll +  gevocab:cenroll + (
1 | school/class), data = achieve), corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ gevocab + clenroll + cenroll + gevocab:cenroll + (1 |   
    school/class) 
   Data: achieve 
 
REML criterion at convergence: 43152 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.190 -0.568 -0.206  0.318  4.472  
 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 class:school (Intercept) 0.0886   0.298    
 school       (Intercept) 0.0751   0.274    
 Residual                 3.6982   1.923    
Number of obs: 10320, groups:  class:school, 568; school, 160 
 
Fixed effects: 
                   Estimate  Std. Error t value 
(Intercept)      1.75154296  0.20999286    8.34 
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gevocab          0.48999982  0.01168332   41.94 
clenroll         0.01880075  0.00951172    1.98 
cenroll         -0.00001315  0.00000563   -2.34 
gevocab:cenroll  0.00000234  0.00000107    2.19 
fit warnings: 
Some predictor variables are on very different scales: consider rescaling 
anova(model2, model3) 
Data: achieve 
Models: 
model2: geread ~ gevocab + clenroll + cenroll + (1 | school/class) 
model3: geread ~ gevocab + clenroll + cenroll + gevocab:cenroll + (1 | school/class
) 
       npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model2    7 43101 43152 -21544     43087                       
model3    8 43099 43157 -21541     43083  4.81  1      0.028 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
library(ggeffects) 
plot(effects::allEffects(model3)) 

 
The interaction between student vocabulary score and school enrollment is statistically significant (LRT 
p-value = .02829) and the coefficient is positive: The rate of increase in z_read with each one-unit 
increase in gevocab is larger for larger schools than for smaller schools, after adjusting for the other 
variables. Or ‘the impact of gevocab on reading scores varies depending on the size of the school.’ We 
note that the impact of school size (assuming gevocab = 0) is now significant. 

(g) What about? 
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summary(model4 <- lmer(geread ~ gevocab + gender + (1 + gender| school/class), data 
= achieve)) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ gevocab + gender + (1 + gender | school/class) 
   Data: achieve 
 
REML criterion at convergence: 43108 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.204 -0.568 -0.207  0.317  4.445  
 
Random effects: 
 Groups       Name        Variance Std.Dev. Corr  
 class:school (Intercept) 0.1483   0.3851         
              gender      0.0196   0.1399   -0.62 
 school       (Intercept) 0.0328   0.1810         
              gender      0.0066   0.0812   0.61  
 Residual                 3.6925   1.9216         
Number of obs: 10320, groups:  class:school, 568; school, 160 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  2.01559    0.07560   26.66 
gevocab      0.50909    0.00841   60.55 
gender       0.01723    0.03922    0.44 
 
Correlation of Fixed Effects: 
        (Intr) gevocb 
gevocab -0.527        
gender  -0.757  0.039 
optimizer (nloptwrap) convergence code: 0 (OK) 
Model failed to converge with max|grad| = 0.0093274 (tol = 0.002, component 1) 
plot(effects::allEffects(model4)) 
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#Note in these data, the males are predicted (after averaging over everything) to  
have higher reading scores than the females (with same vocab score and no school or 
class random effects) 

There is meaningful variation in the intercepts (average scores when gender = 0 with average gevocab) 
at both the class level and the school level (though less so). But there is not a significant gender gap, 
after adjusting for gevocab (t-value = 0.439), and there is not a lot of variation in the slopes of gender 
among classes or among schools. 

From the graphs (now below), I think I can interpret the correlations of the random effects. At 
the school level, the correlation between the intercepts and slopes is positive. So school that 
have higher intercepts (gender = 0) tend to have steeper slopes (larger benefits for males 
compared to females). 

plot(ggpredict(model4, terms = c("gender", "school [sample = 9]"), type = "random")
, show_ci = FALSE)  
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For the classes, the correlation between the random intercepts and random slopes is negative, 
with a minimum at -(-0.57)/.01349 = 42, so the lines are (in general) fanning in and the classes 
with larger intercepts at gender = 0 tend to have smaller differences between males and 
females (perhaps even reversing direction). So schools with higher means for females tend to 
have lower scores for males and classes with lower means for females tend to have higher 
scores for males. You can also think of this as less variation in the class means for males than 
for females. 

But in a practical sense, these lines are pretty much parallel here! 

#refitting the model with the ‘separate’ error components 
summary(model4 <- lmer(geread ~ gevocab + gender + (1 + gender|school) + (1 + gende
r | school_class), data = achieve))  
library(ggplot2) #to make the ridiculous scaling 
plot(ggpredict(model4, terms = c("gender", "school_class [sample = 9]"), type = "ra
ndom"), show_ci = FALSE) + 
  scale_x_continuous(limits = c(0, 50)) 
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Here is another interesting graph, reinforcing how minute the gender difference is! 

plot(ggpredict(model4, 
          terms = c("gevocab", "gender", "school [sample = 9]"), 
          type = "random")) 
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Here is a comparison of the “gender gaps” across classes and schools. So the main thing I 
notice is that we are almost as likely to have postive differences as negative differences at the 
class level, but generally more positive differences (male - female) at the school level. So this 
is telling us that at the class level, it’s the classes with higher female averages that tend to 
have those negative differences. 

 

And the graphs of random slope effects vs. random intercept effects! 

plot(ranef(model4)$school[[2]]~ranef(model4)$school[[1]]) 
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plot(ranef(model4)$school_class[[2]], ranef(model4)$school_class[[1]]) 

 

(h) How would you interpret the following models? 

lmer(geread~gevocab+gender + (1|school) + (gender|class), data = achieve) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ gevocab + gender + (1 | school) + (gender | class) 
   Data: achieve 
REML criterion at convergence: 43140 
Random effects: 
 Groups   Name        Std.Dev. Corr 
 school   (Intercept) 0.3145        
 class    (Intercept) 0.0507        
          gender      0.0015   1.00 
 Residual             1.9404        
Number of obs: 10320, groups:  school, 160; class, 8 
Fixed Effects: 
(Intercept)      gevocab       gender   
     1.9996       0.5132       0.0198   
optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warni
ngs  
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lmer(geread~gevocab+gender + (-1 + gender|school) + (1|class), data = achieve) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ gevocab + gender + (-1 + gender | school) + (1 | class) 
   Data: achieve 
REML criterion at convergence: 43146 
Random effects: 
 Groups   Name        Std.Dev. 
 school   gender      0.1926   
 class    (Intercept) 0.0567   
 Residual             1.9415   
Number of obs: 10320, groups:  school, 160; class, 8 
Fixed Effects: 
(Intercept)      gevocab       gender   
     2.0019       0.5150       0.0148   
lmer(geread~gevocab+gender + (1|corp) + (1|school) + (gender|class), data = achieve
) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: geread ~ gevocab + gender + (1 | corp) + (1 | school) + (gender |   
    class) 
   Data: achieve 
REML criterion at convergence: 43106 
Random effects: 
 Groups   Name        Std.Dev. Corr 
 school   (Intercept) 0.17074       
 corp     (Intercept) 0.25160       
 class    (Intercept) 0.04478       
          gender      0.00496  1.00 
 Residual             1.94044       
Number of obs: 10320, groups:  school, 160; corp, 59; class, 8 
Fixed Effects: 
(Intercept)      gevocab       gender   
      2.017        0.511        0.019   
 

Question 1: This gives us random intercepts at the school level and random intercepts and random 
slopes for gender at the class level. The level 2 and level 3 residuals are assumed to be uncorrelated, 
but the random intercepts and random slopes at level 2 are assumed correlated. So we have 8 
parameters (intercept, slope of gevocab, slope of gender, tau for school intercepts, tau for gender 
intercepts, tau for gender slopes, covariance between those, and sigma. (You get a bump up or down 
depending on your class and depending on your school) 
Question 2: This fits random intercepts at the class level and allows gender effects to vary across 
schools but does not fit additional random intercepts at the school level. (You get a bump up or down 
depending on your class but not again depending on your school.) Our parameters will be sigma, 
overall intercept, slope for gevocab, slope for gender, tau for gender, and tau for class (6 parameters). 
No correlations (only one random effect at each level). Question 3: This has random intercepts at all 3 
levels and random slopes for gender at the class level. So the parameters are sigma, intercept, slope 
for gevocab, slope for gender, tau for corp, tau for school, tau for class, tau for gender-class and 
covariance between class intercepts and class slopes = 9 parameters. This would be equivalent to 
geread ~ gevocab + gender + (1 | corp/school/class) + (-1 + gender | class) 
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This command lmer(geread~gevocab+gender + (1 + gender |corp/school/class) , data=achieve)) 
means we also have random slopes for gender at the corp and school levels as well (and correlations 
between those slopes and the intercepts at each level; 9 + 4 = 13 parameters) 

(i) How would you interpret the following models? How many parameters in each 
model? 

lmer(z_read ~ cen_pos + female + cen_size + (1 | region/schoolid)) 

schools nested within regions; random intercepts for schools and random intercepts for regions; 
parameters: intercept, 3 fixed effects, variance for school intercept, variance for region intercept, 
sigma = 7 

lmer(z_read ~ cen_pos + female + cen_size + (1 | region) + (1 | schoolid) 

same as first as long as school ids are unique 

lmer(z_read ~ cen_pos + female + cen_size + (1 + female | region/schoolid) 

ntercept, 3 fixed fixed effects, random intercepts for school and random intercepts for region, random 
slopes for female for school and region, 2 covariance, sigma: 11 

lmer(z_read ~ cen_pos + female + cen_size + (1 + female | schoolid) + (1 | region) 

intercept, 3 fixed fixed effects, random intercepts for school and random intercepts for region, random 
slopes for female for school , 1 covariance, sigma: 9 

Notes: 
• The number of correlation terms is equal to the number of unique pairs among Level Two 

random effects 
• With three of more levels, will distinguish between variance partitioning coefficients (vpc) 

and intraclass correlation coefficient (ICC) = (sum of shared group variances for the 
individuals)/(total variation) 

• Two students in same class (𝜎𝑢
2 + 𝜎𝑣

2) vs. two students at same school but different 

classes (𝜎𝑣
2) 


