Fall, 2025 Wednesday, Nov. 19

Stat 414 - Day 17

Three-level models (4.9)

Last Time: Using AR(1) structure at Level 1
+  With longitudinal data, may want to also consider alternative correlation structures for the
Level 1 residuals
«  AR(1) assumes €;; = pe_1); + v;; which models cor(e;j, €;-1);) = p but still assumes
equal variance 2.
«  var(y;) =18 +0?
+ cov(yij yij) =78 +pHlo?
*  Three-level models

Example 1: Case Study (from Finch, Bolin, & Kelly)

Data were collected to predict reading achievement for 10,903 third-grade students nested
within 568 classrooms nested within 160 schools (achieve.txt).

achieve = read.table("https://www.rossmanchance.com/stat414F20/data/Achieve.txt" ,
header=TRUE)

# I have reason to believe gender = 1 is female and gender = 2 1is male

Unconditional means model

Fit the unconditional means three-level (null) model, putting the higher level first to see how
much variation is at each level.
#Llibrary(Lme4)
summary(model® <- lmer(geread~ (1|school/class), data = achieve, REML = F))
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: geread ~ (1 | school/class)

Data: achieve

AIC BIC loglLik -2*log(L) df.resid
46150 46179 -23071 46142 10316

Scaled residuals:
Min 1Q Median 3Q Max
-2.305 -0.629 -0.210 0.304 3.867

Random effects:

Groups Name Variance Std.Dev.
class:school (Intercept) 0.273 0.522
school (Intercept) ©.309 0.556
Residual 4.847 2.202

Number of obs: 10320, groups: class:school, 568; school, 160

Fixed effects:
Estimate Std. Error t value
(Intercept) 4.3081 0.0548 78.6
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#model@b <- Lme(geread ~ 1, random = ~1 | school/class, data = achieve, method="ML"

)
#summary (model@b)

(a) How many parameters are in this model? How do you interpret them?
4: overall intercept, sigma, class intercept variance, school intercept variance

What if we try

summary(1lmer(geread~ (1|school) + (1 |class), data = achieve))
Linear mixed model fit by REML ['lmerMod']
Formula: geread ~ (1 | school) + (1 | class)

Data: achieve

REML criterion at convergence: 46267

Scaled residuals:
Min 1Q Median 3Q Max
-2.294 -0.636 -0.214 ©0.285 3.886

Random effects:

Groups  Name Variance Std.Dev.

school (Intercept) 0.3906 0.6250

class (Intercept) 0.0052 0.0721

Residual 5.0424 2.2455
Number of obs: 10320, groups: school, 160; class, 8

Fixed effects:
Estimate Std. Error t value
(Intercept) 4.3301 0.0642 67.5

(b) What is the issue? How can we “fix” this?
(i) Code
achieve$school class <- paste(achieve$school,” ", achieve$class)
summary(modell <- lmer(geread~ (1|school) + (1 |school class), data = achieve))
Linear mixed model fit by REML ['lmerMod']
Formula: geread ~ (1 | school) + (1 | school class)
Data: achieve

REML criterion at convergence: 46146
Scaled residuals:

Min 1Q Median 3Q Max
-2.305 -0.629 -0.209 0.305 3.867

Random effects:

Groups Name Variance Std.Dev.
school class (Intercept) 0.273 0.522
school (Intercept) 0.312 0.558

Residual 4,847 2.202
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Number of obs: 10320, groups: school class, 568; school, 160

Fixed effects:
Estimate Std. Error t value

(Intercept) 4.308 0.055 78.3
(c) What percentage of the total variation is at each level? (VPC = variance partitioning
coefficient)

(i) Code

#don't be fooled by the name!
performance::icc(modell, by group=TRUE)
# ICC by Group

school_class | 0.050

school | ©.057

#The lLargest source of variation in the scores 1is among students in the same clas
s.

(d) What do you learn from the following?
modell = 1lmer(geread~ (1]|corp/school/class), data = achieve, REML = F)
summary(modell)
Linear mixed model fit by maximum likelihood [ 'lmerMod']
Formula: geread ~ (1 | corp/school/class)
Data: achieve

AIC BIC loglLik -2*log(L) df.resid
46110 46146 -23050 46100 10315

Scaled residuals:
Min 1Q Median 3Q Max
-2.299 -0.631 -0.213 0.303 3.944

Random effects:

Groups Name Variance Std.Dev.
class:school:corp (Intercept) ©.2754 ©0.525
school:corp (Intercept) ©.0869 0.295
corp (Intercept) 0.1734 0.416
Residual 4.8470  2.202

Number of obs: 10320, groups:
class:school:corp, 568; school:corp, 160; corp, 59

Fixed effects:

Estimate Std. Error t value
(Intercept) 4.3258 0.0715 60.5
anova(modell, model®)
Data: achieve
Models:
model@: geread ~ (1 | school/class)
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modell: geread ~ (1 | corp/school/class)
npar  AIC BIC loglLik -2*1log(L) Chisq Df Pr(>Chisq)

modelo 4 46150 46179 -23071 46142

modell 5 46110 46146 -23050 46100 42.2 1 8.l1le-11 ***
Signif. codes: © '***' @9.,001 '**' 9,01 '*' ©0.05 '.' 0.1 ' ' 1
#confint(model1l)

Variation in intercepts across corp (think school district) also appears to be meaningful.

(e) What do you learn from the following? (Better fitting model? Any of the variables
significant? Variance explained? Do signs of coefficients make sense? (gevocab =
student vocabulary scores, clenroll = size of the student’s reading class, cenrol = size of the
student’s school)

summary(model2 <- 1lmer(geread ~ gevocab + clenroll + cenroll + (1 | school/class),
data = achieve, REML = F), corr=FALSE )
Linear mixed model fit by maximum likelihood [ 'lmerMod']
Formula: geread ~ gevocab + clenroll + cenroll + (1 | school/class)
Data: achieve

AIC BIC loglLik -2*log(L) df.resid
43101 43152 -21544 43087 10313

Scaled residuals:
Min 1Q Median 3Q Max
-3.220 -0.568 -0.208 ©0.319 4.473

Random effects:

Groups Name Variance Std.Dev.
class:school (Intercept) ©.0902 0.300
school (Intercept) 0.0739 0.272
Residual 3.6975 1.923

Number of obs: 10320, groups: class:school, 568; school, 160

Fixed effects:
Estimate Std. Error t value
(Intercept) 1.67617679 ©.20694549 8.10
gevocab 0.50773055 0.00842293 60.28
clenroll 0.01890214 ©.00950530 1.99
cenroll -0.00000371 0.00000361 -1.03
fit warnings:
Some predictor variables are on very different scales: consider rescaling
anova(model2, model®)
Data: achieve
Models:
model®: geread ~ (1 | school/class)
model2: geread ~ gevocab + clenroll + cenroll + (1 | school/class)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
model® 4 46150 46179 -23071 46142
model2 7 43101 43152 -21544 43087 3055 3 <2e-16 ***
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Signif. codes: © '***' @9.,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1
#confint(model2)

#performance: :r2(model2, by group= TRUE)

m2 <- lmer(geread ~ gevocab + clenroll + cenroll + (1|school) + (1|school class), d
ata = achieve)

performance::r2(m2, by group= TRUE)

# Explained Variance by Level

Level | R2
Level 1 | ©.237
school | ©.755

school class | ©.668

The AIC has decreased (46150 to 43101) and the improvement in the model fit appears to be
statistically significant (p-value from LRT < .0001). The student vocabulary scores (Level 1) and the
students’ reading class (level 2) appear to be significant, after adjusting for the other variables, but the
size of the school size does not (level 3). The negative coefficient on the size of the class may seem
counter intuitive, but larger classes may also come with additional TA support. The model (compared
to the null model) explains 23.7% of the variation at Level 1 (within class), (1 -.09016/0.2726) => 66.8%
at the class level and 75.5% at the school level compared to the null model. (Note, we had to use the
split up version to get these values for each level)

(f) What do you learn from the following?

summary(model3 <- lmer(geread ~ gevocab + clenroll + cenroll + gevocab:cenroll + (
1 | school/class), data = achieve), corr=F)
Linear mixed model fit by REML ['lmerMod’]
Formula: geread ~ gevocab + clenroll + cenroll + gevocab:cenroll + (1 |
school/class)
Data: achieve

REML criterion at convergence: 43152
Scaled residuals:

Min 1Q Median 3Q Max
-3.190 -0.568 -0.206 ©.318 4.472

Random effects:

Groups Name Variance Std.Dev.
class:school (Intercept) ©.0886 0.298
school (Intercept) 0.0751 0.274
Residual 3.6982 1.923

Number of obs: 10320, groups: class:school, 568; school, 160

Fixed effects:
Estimate Std. Error t value
(Intercept) 1.75154296 0.20999286 8.34
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gevocab 0.48999982 0.01168332 41.94
clenroll 0.01880075 ©0.00951172 1.98
cenroll -0.00001315 0.00000563 -2.34

gevocab:cenroll 0.00000234 ©0.00000107 2.19

fit warnings:

Some predictor variables are on very different scales: consider rescaling
anova(model2, model3)

Data: achieve

Models:

model2: geread ~ gevocab + clenroll + cenroll + (1 | school/class)

model3: geread ~ gevocab + clenroll + cenroll + gevocab:cenroll + (1 | school/class

)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

model2 7 43101 43152 -21544 43087

model3 8 43099 43157 -21541 43083 4.81 1 0.028 *
Signif. codes: © '***' @9.,001 '**' 9,01 '*' ©0.05 '.' 0.1 ' ' 1
library(ggeffects)

plot(effects::allEffects(model3))

clenroll effect plot gevocab*cenroll effect ploi

| | L1 024680
47T - Liitpiiil
cenrplcerdpll = 4[10@0
46 B _ — 7
45 - - i ~ 0
T 44 - . [ 3
5 - - 2
o 4.3 7 - o cenraenrbicertdll = 20000
42 - L -
41 - 3 .
3 -
AR TTITITITITITITITTT 2 -
15 20 25 30 024630 24630
clenroll gevocab

The interaction between student vocabulary score and school enrollment is statistically significant (LRT
p-value =.02829) and the coefficient is positive: The rate of increase in z_read with each one-unit
increase in gevocab is larger for larger schools than for smaller schools, after adjusting for the other
variables. Or ‘the impact of gevocab on reading scores varies depending on the size of the school.” We
note that the impact of school size (assuming gevocab = 0) is now significant.

(g) What about?
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summary(model4 <- 1lmer(geread ~ gevocab + gender + (1 + gender| school/class), data
= achieve))
Linear mixed model fit by REML ['lmerMod']
Formula: geread ~ gevocab + gender + (1 + gender | school/class)
Data: achieve

REML criterion at convergence: 43108
Scaled residuals:

Min 1Q Median 3Q Max
-3.204 -0.568 -0.207 0.317 4.445

Random effects:

Groups Name Variance Std.Dev. Corr
class:school (Intercept) ©.1483 0.3851

gender 0.0196 0.1399 -0.62
school (Intercept) ©.0328 0.1810

gender 0.0066 0.0812 0.61
Residual 3.6925 1.9216

Number of obs: 10320, groups: class:school, 568; school, 160

Fixed effects:

Estimate Std. Error t value
(Intercept) 2.01559 0.07560 26.66
gevocab 0.50909 0.00841 60.55
gender 0.01723 0.03922 0.44

Correlation of Fixed Effects:
(Intr) gevocb
gevocab -0.527
gender -0.757 0.039
optimizer (nloptwrap) convergence code: @ (OK)
Model failed to converge with max|grad| = ©.0093274 (tol = 0.002, component 1)
plot(effects::allEffects(modeld))
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#Note in these data, the males are predicted (after averaging over everything) to
have higher reading scores than the females (with same vocab score and no school or
class random effects)

There is meaningful variation in the intercepts (average scores when gender = 0 with average gevocab)
at both the class level and the school level (though less so). But there is not a significant gender gap,
after adjusting for gevocab (t-value = 0.439), and there is not a lot of variation in the slopes of gender
among classes or among schools.

From the graphs (now below), | think | can interpret the correlations of the random effects. At
the school level, the correlation between the intercepts and slopes is positive. So school that
have higher intercepts (gender = 0) tend to have steeper slopes (larger benefits for males
compared to females).

plot(ggpredict(modeld, terms = c("gender", "school [sample = 9]"), type = "random")
, show _ci = FALSE)
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Predicted values of geread
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For the classes, the correlation between the random intercepts and random slopes is negative,
with a minimum at -(-0.57)/.01349 = 42, so the lines are (in general) fanning in and the classes
with larger intercepts at gender = 0 tend to have smaller differences between males and
females (perhaps even reversing direction). So schools with higher means for females tend to
have lower scores for males and classes with lower means for females tend to have higher
scores for males. You can also think of this as less variation in the class means for males than
for females.

But in a practical sense, these lines are pretty much parallel here!

#refitting the model with the €‘separate’ error components
summary(modeld <- lmer(geread ~ gevocab + gender + (1 + gender|school) + (1 + gende
r | school class), data = achieve))
library(ggplot2) #to make the ridiculous scaling
plot(ggpredict(modeld4, terms = c("gender", "school class [sample = 9]"), type = "ra
ndom"), show_ci = FALSE) +

scale x_continuous(limits = c(@, 50))
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Predicted values of geread
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Here is another interesting graph, reinforcing how minute the gender difference is!

plot(ggpredict(model4,
terms = c("gevocab", "gender", "school [sample = 9]"),
type = "random"))
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Predicted values of geread
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Here is a comparison of the “gender gaps” across classes and schools. So the main thing |
notice is that we are almost as likely to have postive differences as negative differences at the
class level, but generally more positive differences (male - female) at the school level. So this
is telling us that at the class level, it’s the classes with higher female averages that tend to
have those negative differences.
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And the graphs of random slope effects vs. random intercept effects!

plot(ranef(model4)$school[[2]]~ranef(modeld)$school[[1]])
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plot(ranef(modeld)$school class[[2]], ranef(model4)$school class[[1]])
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(h) How would you interpret the following models?

lmer(geread~gevocab+gender + (1|school) + (gender|class), data = achieve)
Linear mixed model fit by REML ['lmerMod’]
Formula: geread ~ gevocab + gender + (1 | school) + (gender | class)
Data: achieve
REML criterion at convergence: 43140
Random effects:
Groups Name Std.Dev. Corr
school (Intercept) 0.3145
class (Intercept) 0.0507
gender 0.0015 1.00
Residual 1.9404
Number of obs: 10320, groups: school, 160; class, 8
Fixed Effects:
(Intercept) gevocab gender
1.9996 0.5132 0.0198
optimizer (nloptwrap) convergence code: @ (OK) ; © optimizer warnings; 1 1lme4 warni
ngs
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lmer(geread~gevocab+gender + (-1 + gender|school) + (1|class), data = achieve)

Linear mixed model fit by REML ['lmerMod']

Formula: geread ~ gevocab + gender + (-1 + gender | school) + (1 | class)
Data: achieve

REML criterion at convergence: 43146

Random effects:

Groups  Name Std.Dev.
school gender 0.1926
class (Intercept) 0.0567
Residual 1.9415

Number of obs: 10320, groups: school, 160; class, 8
Fixed Effects:
(Intercept) gevocab gender
2.0019 0.5150 0.0148
1lmer(geread~gevocab+gender + (1|corp) + (1]|school) + (gender|class), data = achieve
)
Linear mixed model fit by REML ['lmerMod']
Formula: geread ~ gevocab + gender + (1 | corp) + (1 | school) + (gender |
class)
Data: achieve
REML criterion at convergence: 43106
Random effects:

Groups Name Std.Dev. Corr

school (Intercept) 0.17074

corp (Intercept) 0.25160

class (Intercept) 0.04478
gender 0.00496 1.00

Residual 1.94044

Number of obs: 10320, groups: school, 160; corp, 59; class, 8
Fixed Effects:
(Intercept) gevocab gender

2.017 0.511 0.019

Question 1: This gives us random intercepts at the school level and random intercepts and random
slopes for gender at the class level. The level 2 and level 3 residuals are assumed to be uncorrelated,
but the random intercepts and random slopes at level 2 are assumed correlated. So we have 8
parameters (intercept, slope of gevocab, slope of gender, tau for school intercepts, tau for gender
intercepts, tau for gender slopes, covariance between those, and sigma. (You get a bump up or down
depending on your class and depending on your school)

Question 2: This fits random intercepts at the class level and allows gender effects to vary across
schools but does not fit additional random intercepts at the school level. (You get a bump up or down
depending on your class but not again depending on your school.) Our parameters will be sigma,
overall intercept, slope for gevocab, slope for gender, tau for gender, and tau for class (6 parameters).
No correlations (only one random effect at each level). Question 3: This has random intercepts at all 3
levels and random slopes for gender at the class level. So the parameters are sigma, intercept, slope
for gevocab, slope for gender, tau for corp, tau for school, tau for class, tau for gender-class and
covariance between class intercepts and class slopes = 9 parameters. This would be equivalent to
geread ~ gevocab + gender + (1 | corp/school/class) + (-1 + gender | class)
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This command Imer(geread~gevocab+gender + (1 + gender |corp/school/class), data=achieve))
means we also have random slopes for gender at the corp and school levels as well (and correlations
between those slopes and the intercepts at each level; 9 + 4 = 13 parameters)

(i) How would you interpret the following models? How many parameters in each
model?

Imer(z_read ~ cen_pos + female + cen_size + (1 | region/schoolid))

schools nested within regions; random intercepts for schools and random intercepts for regions;
parameters: intercept, 3 fixed effects, variance for school intercept, variance for region intercept,
sigma =7

Imer(z_read ~ cen_pos + female + cen_size + (1 | region) + (1 | schoolid)

same as first as long as school ids are unique

Imer(z_read ~ cen_pos + female + cen_size + (1 + female | region/schoolid)

ntercept, 3 fixed fixed effects, random intercepts for school and random intercepts for region, random
slopes for female for school and region, 2 covariance, sigma: 11

Imer(z_read ~ cen_pos + female + cen_size + (1 + female | schoolid) + (1 | region)

intercept, 3 fixed fixed effects, random intercepts for school and random intercepts for region, random
slopes for female for school, 1 covariance, sigma: 9

Notes:

«  The number of correlation terms is equal to the number of unique pairs among Level Two
random effects

«  With three of more levels, will distinguish between variance partitioning coefficients (vpc)
and intraclass correlation coefficient (ICC) = (sum of shared group variances for the
individuals)/(total variation)

«  Two students in same class (¢2 + ¢2) vs. two students at same school but different
classes (o)



