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Stat 414 - Day 16 
Longitudinal data, cont. (Ch. 15) 

Last Time: Longitudinal data: Have repeat observations over time 
• wide vs. long format
• time varying vs. time invariant variables
• explore the raw data (graphs, correlation matrix)
• time is often the only Level 1 variable

– Consider how parameterized, what “0” represents, start at zero?
– Consider form of association (e.g., linear, quadratic, piecewise)
– Consider random slopes for time (models unequal variances, correlations)

• unconditional growth model: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑡𝑖𝑚𝑒𝑖𝑗 + 𝜖𝑖𝑗

– Random slopes for time 𝑉(𝑌𝑖𝑗) = 𝜏0
2 + 2𝜏01𝑥𝑖𝑗 + 𝜏1

2𝑥𝑖𝑗
2 + 𝜎2

– Assumes (conditional) residuals on the same individual are independent of each

other 𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑘𝑗) = 𝜏0
2 + 𝜏01(𝑥𝑖𝑗 + 𝑥𝑘𝑗) + 𝜏1

2(𝑥𝑖𝑗𝑥𝑘𝑗)

Example: Data were collected by the Minnesota Department of Education for all Minnesota 
schools during the years 2008-2010 to compare charter and non-charter schools. Does the 
model match the data? 
cor(matrix, use="pairwise.complete.obs") 
##  MathAvgScore.0 MathAvgScore.1 MathAvgScore.2 
## MathAvgScore.0  1.0000000  0.8064146  0.7727215 
## MathAvgScore.1  0.8064146  1.0000000  0.8331408 
## MathAvgScore.2  0.7727215  0.8331408  1.0000000 

For the unconditional growth model, compare the estimated response variances and the 
correlation matrix to the raw data. 

Conditional variance-covariance 
##        1      2      3 
## 1 8.8202 0.0000 0.0000 
## 2 0.0000 8.8202 0.0000 
## 3 0.0000 0.0000 8.8202 

Marginal variance-covariance 
##        1      2      3 
## 1 48.263 40.952 42.462 
## 2 40.952 51.392 44.192 
## 3 42.462 44.192 54.742 

Conditional correlations 
##  1 2 3 
## 1 1 0 0 
## 2 0 1 0 
## 3 0 0 1 

Marginal correlations 
##  1  2  3 
## 1 1.0000000 0.8222865 0.8261001 
## 2 0.8222865 1.0000000 0.8331700 
## 3 0.8261001 0.8331700 1.0000000 

(a) Compare and contrast the correlation structures between the raw data and the model.
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AR(1) Errors So far we have assumed that the “occasion-specific” residuals (the 𝜖’s) are 

independent: 𝑐𝑜𝑣(𝜖𝑖𝑗, 𝜖𝑘𝑗) = 0 for any pair of occasions on the same individual.  

A common alternative covariance structure is an AR(1) 
model for the Level 1 residuals, which assumes the 
covariance matrix of the errors is of the form 

(b) What does the model assume for 𝑉𝑎𝑟(𝜖𝑖𝑗)?
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(c) What does the model assume for 𝑐𝑜𝑣(𝜖𝑖𝑗, 𝜖𝑘𝑗)? 𝑐𝑜𝑟𝑟(𝜖𝑖𝑗, 𝜖𝑘𝑗)? How do these change the

further apart the measurements in time?

(d) Derive the expression for 𝑐𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑘𝑗) for the AR(1) model.

(f) How many additional parameters does this add to our model?

So instead of random slopes on time, fit the AR(1) structure. 
model2 = lme(MathAvgScore ~ year08 + I(year08^2), random = ~1 | schoolnum, 
correlation=corAR1(), data = chart_long); summary(model2) 
Random effects: 
 Formula: ~1 | schoolnum 

 (Intercept) Residual 
StdDev:  6.464088  3.08765 

Correlation Structure: AR(1) 
 Formula: ~1 | schoolnum 
 Parameter estimate(s): 

 Phi 
0.1418763 

 Correlation structure: 
   lower      est.     upper 

Phi -0.05885505 0.1418763 0.3315805 

 Within-group standard error: 
   lower     est.    upper 
2.791967 3.087650 3.414646 

(g) What is the estimated parameter of the AR(1) model (“autocorrelation”). How do you
interpret it? Is it statistically significant? How are you deciding?

(No random slopes)

---

----

E;1 = PE(i - 1)J + fo where fo ~ N(o, a-2) 

var( EiJ) = a-2 

cov( Eii• EkJ) = pli-k/ a-2 

• cov(Y;J,YkJ) 

= cov( u 01 + E;J, u 01 + EkJ} 

= cov(uoj, Uoj) + cov(E;J, Ekj) Noc,o-,elCOffelationioramlomeffoct, 

= T5 + pli-k/a-2 
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There is a "serial dependence" in the 
residuals but otherwise uncorrelated and 
constant variance, but gives us the 
"decay" in the correlation
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## Random effects: 
##  Formula: ~1 | schoolnum 
##  (Intercept) Residual 
## StdDev:  6.464088  3.08765 

Conditional variance-covariance 
##  1  2  3 
## 1 9.5335795 1.352589 0.1919003 
## 2 1.3525888 9.533580 1.3525888 
## 3 0.1919003 1.352589 9.5335795 

Marginal variance-covariance 
## Marginal variance covariance matrix 
##        1      2      3 
## 1 51.318 43.137 41.976 
## 2 43.137 51.318 43.137 
## 3 41.976 43.137 51.318 

Conditional correlations 
##  1  2  3 
## 1 1.00000000 0.1418763 0.02012888 
## 2 0.14187628 1.0000000 0.14187628 
## 3 0.02012888 0.1418763 1.00000000 

Marginal correlations 
##  1  2  3 
## 1 1.0000000 0.8405825 0.8179649 
## 2 0.8405825 1.0000000 0.8405825 
## 3 0.8179649 0.8405825 1.0000000 

(h) Show how to find the correlation between year 1 and year 3 residuals based on the
correlation between year 1 and year 2 residuals.

(i) Show how to find the “marginal” variance at time 0. What about time 1 and time 2?

(j) Show how to find the values in the marginal variance-covariance and correlation matrices

(k) Does the correlation matrix appear to be a better fit to the data?
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Notes: 
• The AR structure does assume the observations are equally spaced in time (e.g., one year

to the next/same distance apart) for all individuals. The AR model also assumes the
variance is the same at the different time points, just allows for this consistent drop off in
correlation as time points are further apart.

• There are more flexible structures, but “in many applications, AR(1) provides an adequate
model of the within subject correlation, providing more power without sacrificing Type I
error control.”

• From Roback and Legler (2019): In the charter school example, as is often true in
multilevel models, the choice of covariance matrix does not greatly affect estimates of
fixed effects. The choice of covariance structure could potentially impact the standard
errors of fixed effects, and thus the associated test statistics, but the impact appears
minimal in this particular case study. In fact, the standard model typically works very well.
So is it worth the time and effort to accurately model the covariance structure? If primary
interest is in inference regarding fixed effects, and if the standard errors for the fixed
effects appear robust to choice of covariance structure, then extensive time spent
modeling the covariance structure is not advised. However, if researchers are interested in
predicted random effects and estimated variance components in addition to estimated
fixed effects, then choice of covariance structure can make a big difference. For instance,
if researchers are interested in drawing conclusions about particular schools rather than
charter schools in general, they may more carefully model the covariance structure in this
study.




