Fall, 2025 Wednesday, Nov. 12

Stat 414 - Day 15
Longitudinal Models (Ch. 15)

Previously

Have data nested within groups. Want to include the grouping variable in the model. Including
it as random intercepts gives us a multilevel model, which has advantages including

e Allows separation of within group and between group variation

Allows for inclusion of Level 1 and Level 2 variables

Induces/Estimates within group correlation

Including random slopes models heterogeneous responses (Level 2)

Including cross-level interactions can explain variation in slopes (Level 2 equation)

Does not require equal group sizes/handles missing values well

Multilevel models are especially helpful for “longitudinal data” (e.g., repeat observations on the
same individual over time). Typically with longitudinal data we want to focus on changes over
time and the effect of Level 2 variables. (We've actually already been looking at repeated
measures data, but you will see some different terminology come up.)

Example 1: Minnesota schools

Data were collected by the Minnesota Department of Education for all Minnesota schools
during the years 2008-2010 to compare charter and non-charter schools. School performance
is measured by the mean score on the math portion of the Minnesota Comprehensive
Assessment (MCA-II) data for the 6th grade students enrolled in 618 different Minnesota
schools during the years 2008, 2009, and 2010. (MCA test scores for sixth graders are scaled
to fall between 600 and 700, where scores above 650 for individual students indicate “meeting
standards.” Thus, schools with averages below 650 will often have increased incentive to
improve their scores the following year.)

Explore the data

(a) Identify the Level 1 and Level 2 units.
Level 1 units = measurement occassions; Lever 2 units = schools

First we want to explore how MCA math test scores relate to important Level 2 variables. This
can be done using the data values for all three years or by averaging the data values for the
three years into one number, or by using the 2010 values.

(b) What assumption is made by these last 2 approaches? Reasonable?

That year to year variation in the values is small enough to ignore them. Probabiilty a reasonable
assumption. In general, we will want to classify variables as time varying (level 1) or time invariant
(level 2).

For the second approach, open the “wide format” of the data (chart.wide.txt, this includes three
columns for the three time points for each school) and use the SchoolAvg variable as the
response. Examine the associations of these variable with several of the Level 2 variables.
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schoolID schoolid schoolName urban
1 1141 Dtype 1 Dnum 704 Snum 2 A.I. JEDLICKA MIDDLE SCHOOL 1
2 1636 Dtype 7 Dnum 4073 Snum 10 ACADEMIA CESAR CHAVEZ CHARTER SCH. 1
3 362 Dtype 1 Dnum 2396 Snum 150 ACGC ELEMENTARY GRADES 5 AND 6 (%]
4 1582 Dtype 7 Dnum 4018 Snhum 10 ACHIEVE LANGUAGE ACADEMY 1
5 959 Dtype 1 Dnum 625 Snum 410 ADAMS MAGNET ELEMENTARY 1
6 821 Dtype 1 Dnum 511 Snum 15 ADRIAN MIDDLE (%]
charter schPctnonw schPctsped schPctfree MathAvgScore.® MathAvgScore.l
1 0 0.01600 0.1040 0.2320 651.1 650.3
2 1 0.00000 0.1429 0.9286 634.5 640.1
3 (5] 0.01667 0.1333 0.4833 652.3 647.5
4 1 0.91111 0.2000 0.8889 646.4 649.3
5 0 0.67105 0.1053 0.4474 654.0 651.5
6 0 0.05556 0.1389 0.4444 649.7 651.0
MathAvgScore.2 SchoolAvg
1 653.9 651.8
2 640.3 638.3
3 655.4 651.7
4 650.6 648.8
5 650.0 651.8
6 658.2 653.0
MathAvgScore.® MathAvgScore.l MathAvgScore.2
MathAvgScore.® 1.0000 0.8064 0.7727
MathAvgScore.1 0.8064 1.0000 0.8331
MathAvgScore.?2 0.7727 0.8331 1.0000
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(c) Which variable(s) seem(s) most useful in predicting the average math score?

percentage free lunch, maybe percentage nonwhite (but check out the zeros virst), maybe percentage
special ed (but check out the zeros and ones first), charter vs. public

Now open the “long format” of the data.

[1] "obsNum" "distschNum" "yeares8" "districtType" "MathAvgScore"
[6] "MonPerChild" "schoolName" "schPctnonw" "schPctsped” "schPctfree”
[11] "city" "urban" "charter" "schoolnum"
obsNum distschNum year@8 districtType MathAvgScore MonPerChild
1 1 Dtype 1 Dnum 1 Snum 2 (%] 1 652.8 8000
2 2 Dtype 1 Dnum 1 Snum 2 1 1 656.6 8266
3 3 Dtype 1 Dnum 1 Snum 2 2 1 652.6 8119
4 4 Dtype 1 Dnum 100 Snum 1 (%] 1 646.9 7682
5 5 Dtype 1 Dnum 100 Snum 1 1 1 645.3 8511
6 6 Dtype 1 Dnum 100 Snhum 1 2 1 651.9 8357
schoolName schPctnonw schPctsped schPctfree city urban
1 RIPPLESIDE ELEMENTARY 0.0000 0.1176 0.3627 Aitkin (%]
2 RIPPLESIDE ELEMENTARY 0.0000 0.1176 0.3627 Aitkin 0
3 RIPPLESIDE ELEMENTARY 0.0000 0.1176 0.3627 Aitkin 0
4 WRENSHALL ELEMENTARY 0.0303 0.1515 0.4242 Wrenshall 0
5 WRENSHALL ELEMENTARY 0.0303 0.1515 0.4242 Wrenshall 0
6 WRENSHALL ELEMENTARY 0.0303 0.1515 0.4242 Wrenshall 0
charter schoolnum
1 0 1
2 0 1
3 0 1
4 0 2
5 0 2
6 0 2

(d) Explain what year08 represents.
The number of years since 2008

Create two visual representations of math scores vs. time for the first 20 schools:

* separate graphs for each school
« connecting lines or smoothers for each school overlaid on same graph (i.e., “spaghetti
plot”)
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#  separate graphs for each school (first 20 schools = 60 observations)
ggplot(data = chart _long[1:57,], aes(y = MathAvgScore, x = yeare8)) +
geom_line() +

facet_wrap(~schoolnum) +

theme_bw()
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#  connecting Lines or smoothers for each school (1st 200) overlaid on same graph

(i.e.,

"spaghetti plot")

ggplot(data = chart_long[1:600,], aes(y = MathAvgScore, x = year@8, group = schooln

um)) +

geom line() +
geom_smooth(aes(group=1),color="green",size=1, se=F) +

theme_bw()
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(e) Does the change over time in the average math score look linear? Does it look like
we will want to include random intercepts? (Meaning?) Does it look like we will want to
include random slopes? (Meaning?)

Yes to random intercepts: the school averages vary a lot in 2008. Maybe not random slopes as the rate
of change from year to year doesn’t seem to change as much as school to school.

Produce a graph of the Math scores vs. year, separated by the charter (charter = 1) vs. public
(charter = 0) schools.

#charter = 1, public = ©

ggplot(data = chart_long, aes(y = MathAvgScore, x = year08)) +
geom_line(aes(group=schoolnum)) +
facet_wrap(.~charter) +
geom_smooth(aes(group=1),color="green",size=1, method="loess", se = F) +
theme_bw()
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MathAvgScore

#SEE ALSO
boxplot(MathAvgScore ~ year@8*charter, data = chart_long)
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(f) What do you learn?

Lower 2008 averae scores for charter schools but maybe steeper slopes (year to year growth) than for
public schools.
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Modelling

Fit the null model.
#null model - using Lmer

model® = 1lmer(MathAvgScore ~ 1 + (1 | schoolnum), data

0)

Linear mixed model fit by REML ['lmerMod']

Formula: MathAvgScore ~ 1 + (1 | schoolnum)
Data: chart_long

REML criterion at convergence: 10530
Scaled residuals:

Min 1Q Median 3Q Max
-3.157 -0.495 0.014 0.513 3.569

Random effects:

Groups Name Variance Std.Dev.
schoolnum (Intercept) 41.9 6.47
Residual 10.6 3.25

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:

Estimate Std. Error t value
(Intercept) 652.746 0.273 2395
performance::icc(model®)
# Intraclass Correlation Coefficient

Adjusted ICC: ©.798
Unadjusted ICC: ©0.798

pred <- ggpredict(model®, terms = "schoolnum [all]", type

pred _df <- as.data.frame(pred)

ggplot(pred_df, aes(x = x, y = predicted)) +
geom point(size = 1) +
geom_errorbar(aes(ymin = conf.low, ymax =

theme_bw()

Wednesday, Nov. 12

chart_long); summary(model

= "random")

conf.high), width = @) +
labs(y = "Estimated mean", x = "schoolnum") +
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(g) What is the ICC for these data? What does this tell you? Does this model adequately
capture the behavior of our longitudinal data?

ICC =0.798, so about 80% of variation in 2008 in math scores is between schools rather than within,
and the correlation of two observations (measurement occassions) for the same school is 0.80.

#Changing to Lme to get the variance-covariance matrix of the (predicted) responses
#Library(nlme)
modeldb = lme(MathAvgScore ~ 1, random = ~ 1 | schoolnum, data = chart_long); summa
ry(model®)
Linear mixed model fit by REML ['lmerMod']
Formula: MathAvgScore ~ 1 + (1 | schoolnum)

Data: chart_long

REML criterion at convergence: 10530
Scaled residuals:

Min 1Q Median 3Q Max
-3.157 -0.495 0.014 0©.513 3.569

Random effects:

Groups Name Variance Std.Dev.
schoolnum (Intercept) 41.9 6.47
Residual 10.6 3.25

Number of obs: 1733, groups: schoolnum, 618
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Fixed effects:
Estimate Std. Error t value
(Intercept) 652.746 0.273 2395
getVarCov(model®b, type = "conditional")
schoolnum 1
Conditional variance covariance matrix
1 2 3
1 10.57 ©0.00 0.00
2 0.00 10.57 0.00
3 0.00 0.00 10.57
Standard Deviations: 3.251 3.251 3.251
getVarCov(model@b, type = "marginal")
schoolnum 1
Marginal variance covariance matrix
1 2 3
1 52.44 41.87 41.87
2 41.87 52.44 41.87
3 41.87 41.87 52.44
Standard Deviations: 7.242 7.242 7.242
cov2cor(getVarCov(model@b, type = "marginal")[[1]])
1 2 3
1 1.0000 0.7984 0.7984
2 0.7984 1.0000 0.7984
3 0.7984 0.7984 1.0000

The “exchangeability assumption” assumes the correlation between any two observations in
the same cluster are the same. This is often not an appropriate assumption with longitudinal
data (measures over time).

(h) How do we get variances and correlations to change over time?

Random slopes

Add Time
#using Lmer for ggpredict
modell = 1lmer(MathAvgScore ~ 1 + year@8 + (1 | schoolnum), data = chart_long)
summary(modell, corr=FALSE)
Linear mixed model fit by REML ['lmerMod']
Formula: MathAvgScore ~ 1 + year@8 + (1 | schoolnum)
Data: chart_long

REML criterion at convergence: 10346
Scaled residuals:

Min 1Q Median 3Q Max
-3.168 -0.461 0.014 0.471 3.602

Random effects:
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Groups Name Variance Std.Dev.
schoolnum (Intercept) 42.86 6.55
Residual 8.91 2.98

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:

Estimate Std. Error t value
(Intercept) 651.3898 0.2895 2250.1
yearo8 1.2799 0.0895 14.3
performance: :r2(modell, by group = TRUE)
# Explained Variance by Level

Level 1 | ©.158
schoolnum | -0.024

Wednesday, Nov. 12

#within school variance decreased from 10.57 to 8.906 (10.57 - 8.906)/10.57 = 0.157

#library(ggeffects)

plot(ggpredict(modell, terms = c("year@8", "schoolnum [sample

m"), show_ci=FALSE)

Predicted values of MathAvgScore

MathAvgScore )

0.0 05 1.0 1.
year(s

[y

performance: : check_model(modell)

schoolnum

139

9]"), type = "rando
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#usine Lme for variance-covariance matrix
modellb = lme(MathAvgScore ~ 1 + year@8, random = ~ 1 | schoolnum, data = chart_lo
ng); summary(modellb)
Linear mixed-effects model fit by REML
Data: chart_long
AIC BIC loglLik
10354 10375 -5173

Random effects:
Formula: ~1 | schoolnum
(Intercept) Residual
StdDev: 6.547 2.984

Fixed effects: MathAvgScore ~ 1 + yeare8
Value Std.Error DF t-value p-value

(Intercept) 651.4 0.2895 1114 2250.1 0

yearo8 1.3 0.0895 1114 14.3 (%}
Correlation:
(Intr)

yeard8 -0.326

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.16755 -0.46088 0.01414 0.47079 3.60218

Number of Observations: 1733
Number of Groups: 618
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cov2cor(getVarCov(modellb, type = "marginal")[[1]])

1 2 3
1 1.000 0.828 0.828
2 0.828 1.000 0.828
3 0.828 0.828 1.000

Unconditional growth model

Adding time is not enough to model heterogeneity, need random slopes... With longitudinal
data, we usually we start with the “unconditional growth model” (time is only Level 1 variable,
we haven’t “conditioned” or “controlled” for any other possible covariates): multilevel model
with year08, random intercepts, and random slopes. (Be sure to use schoolnum, which are
unique, not school name):

mathscore;; = Bo; + P1jyear08;; + €;; where €;; ~ N(0,02)

#using Lmer for ggpredict
#replacing earlier modell
modell = 1lmer(MathAvgScore ~ 1 + year@8 + (1 + year@8| schoolnum), data = chart_lon
g)
summary(modell, corr=FALSE)
Linear mixed model fit by REML ['lmerMod']
Formula: MathAvgScore ~ 1 + year@8 + (1 + year@8 | schoolnum)
Data: chart_long

REML criterion at convergence: 10340
Scaled residuals:

Min 1Q Median 3Q Max
-3.158 -0.467 ©.018 0.460 3.497

Random effects:

Groups Name Variance Std.Dev. Corr
schoolnum (Intercept) 39.441 6.280

yearo8 0.111 0.332 0.72
Residual 8.820 2.970

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:
Estimate Std. Error t value

(Intercept) 651.408 0.279 2332.0

yearo8 1.265 0.090 14.1

#within school variance decreased from 10.57 to 8.906 (10.57 - 8.82)/10.57 = 0.166
#Library(ggeffects)

plot(ggpredict(modell, terms = c("yeare@8", "schoolnum [sample = 9]"), type = "rando

m"), show_ci=FALSE)
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performance: :check_model(modell)
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#usine Lme for variance-covariance matrix
modellb = lme(MathAvgScore ~ 1 + year@8, random = ~ 1 + year@8 | schoolnhum, data =
chart_long); summary(modellb)
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Linear mixed-effects model fit by REML
Data: chart_long
AIC BIC loglik
10352 10384 -5170

Random effects:
Formula: ~1 + year@8 | schoolnum
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 6.280 (Intr)
yearo8 0.332 0.724
Residual 2.970

Fixed effects: MathAvgScore ~ 1 + yeare8
Value Std.Error DF t-value p-value

(Intercept) 651.4 0.27934 1114 2331.9 (7]

yeares8 1.3 0.08997 1114 14.1 0
Correlation:
(Intr)

yearo8 -0.234

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.15786 -0.46676 ©0.01796 0.45956 3.49726

Number of Observations: 1733

Number of Groups: 618

cov2cor(getVarCov(modellb, type = "marginal")[[1]])
1 2 3

000 0.8223 0.8261

223 1.0000 0.8332

261 ©.8332 1.0000

11.0
2 0.8
3 0.8
(i) Describe what this model is doing. What assumptions does this model make about
the “occasion-specific” residuals? Does that seem like a reasonable assumption in this
context? Interpret the variance components (and covariance). What can you tell me
about the populations of intercepts and slopes? How would you determine the
percentage of within-school variation explained by the linear increase over time? How
else can we evaluate the model?

The model assumes that once you account for the multiple time points the observations are now
independent (‘conditional indepencen’). We note there is much mroe school to school variation in
intercepts than in slopes. We assume the population distribution of intercepts across schools is
normally distribution with mean 651.41 and variance 39.44. We assume the population distribution of
slopes across schools is normally distribution with mean 1.265 and variance 0.1105. Positive covariance
between intercepts and slopes: schools with higher avg scores in 2008 tend to have larger increases in
avg score year to year than schools with lower 2008 avg scores. If we compare this model to the null
model, 62 has decreased from 10.57 to 8.82 (16%). The residual plots look ok though a few influential
observations to check out. Could also look more into the normality of the random effects.
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Adding a Level 2 Variable

Include charter (charter schools = 1, public schools = 0) as a Level 2 variable (for both level
equations, i.e., fixed effect and cross-level interaction with year08).
model2 = lmer(MathAvgScore ~ year@8 + charter + charter:year@8 + (year@8 | schoolnu
m), data = chart_long);summary(model2, corr=FALSE)
Linear mixed model fit by REML ['lmerMod’]
Formula: MathAvgScore ~ year@8 + charter + charter:year@8 + (yearos |
schoolnum)
Data: chart_long

REML criterion at convergence: 10292
Scaled residuals:

Min 1Q Median 3Q Max
-3.193 -0.471 0.013 0.466 3.459

Random effects:

Groups Name Variance Std.Dev. Corr
schoolnum (Intercept) 35.832 5.986

yearo8 0.131 0.362 0.88
Residual 8.784 2.964

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:
Estimate Std. Error t value

(Intercept) 652.0584 0.2845 2292.00
yearo8 1.1971 0.0943 12.70
charter -6.0184 0.8656 -6.95
year@8:charter 0.8557 0.3143 2.72

(j) Summarize the charter effect on the intercepts and the charter effect on the slopes.
(Consistent with the graphs above?) Is either statistically significant? (Be very clear
how you are deciding.) How much school-to-school variation in the intercepts has been
explained by the charter school variable? What about the slopes?

In 2008, charter schools averaged lower average scores (by 6.018) than the non-charter schools
(consistent with the lower intercept of the greem model in the graph). Charter schools have a larger
rate of increase in average scores over the 3 years than public schools, on average. The difference
between charter and public schools decreases from 2008 to 2019 (on average). About 9% of the
variation in intercepts is explained, but variation in slopes actually increases. Total variance goes from
39.44 + .11+ 8.82 =48.37 to (35.83 + .13 + 8.78) = 44.74)

Relaxing the linearity assumption

The graphs of average scores over time indicated that there appeared to potentially be a
nonlinear trend. There are many ways to relax the linearity assumption but first we will just
consider a quadratic effect of time.

(k) If we plan to use time and time?, do we need to center time first?
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Not necessary here, is pretty much close to centered already.

(1) Write out the Level 1 and Level 2 equations that include time and time?, but only allow
the intercepts to vary. What assumptions is this “unconditional quadratic growth model”
imposing on the time trends?

yij =B +0j + Bitime;; + ﬁztimeizj + €;5and By; = Boo + Ug;. We are assuming each school has the
same quadratic trend, just different intercepts.

Fit and interpret the model specified in (I).

summary(quadmodel <- lmer(MathAvgScore ~ 1 + year08 + I(yeare08”2) + (1 | schoolnum)
, data=chart_long), corr=F)
Linear mixed model fit by REML ['lmerMod']
Formula: MathAvgScore ~ 1 + year@8 + I(year08”2) + (1 | schoolnum)
Data: chart_long

REML criterion at convergence: 10298
Scaled residuals:

Min 1Q Median 3Q Max
-3.213 -0.476 ©.009 0.469 3.495

Random effects:

Groups Name Variance Std.Dev.
schoolnum (Intercept) 43.05 6.56
Residual 8.52 2.92

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:
Estimate Std. Error t value

(Intercept) 651.741 0.293 2222.75
yearo8 -0.867 0.315 -2.75
I(yearo8”2) 1.068 0.150 7.10
logLik(quadmodel)

'log Lik.' -5149 (df=5)
library(effects)

plot(allEffects(quadmodel))
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plot(ggpredict(quadmodel, terms = c("year@8", "schoolnum [sample = 9]"), type = "ra
ndom"), show_ci=FALSE)
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(m) Is the quadratic effect statistically significant? How do you interpret the sign of the
coefficient of this term?

Yes, t = 7.101. The coefficients are negative then positive, indicatign a dip from 2008 to 2009 and then
anincrease in 2010 (like an interaction with time, the improvement over time increases with time).

Consider the Level 1 and Level 2 equations that include time and time?, allowing the slopes
and intercepts to vary, but with no Level 2 covariates.

#summary (testmodel <- Lmer(MathAvgScore ~ 1 + year98 + I(yeare872) + (1 + yearo8 +
I(yeare872) | schoolnum), data=chart_Long))

(n) Can we fit the suggested model?
No because we only have 3 data values per school, so we don’t have enough degrees of freedom to fit
a different quadratic model per school

Computer problem 15 - due Monday, 7am

Compare the quadratic model to the model that is only linear in time, but with random slopes.
summary(linearmodel <- lmer(MathAvgScore ~ 1 + year@8 + (1 + year@8 | schoolnum),
data=chart_long))
Linear mixed model fit by REML ['lmerMod']
Formula: MathAvgScore ~ 1 + year@8 + (1 + year@8 | schoolnum)

Data: chart_long

REML criterion at convergence: 10340
Scaled residuals:

Min 1Q Median 3Q Max
-3.158 -0.467 ©0.018 0.460 3.497

Random effects:

Groups Name Variance Std.Dev. Corr
schoolnum (Intercept) 39.441 6.280

yearo8 0.111 0.332 0.72
Residual 8.820 2.970

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:
Estimate Std. Error t value

(Intercept) 651.408 0.279 2332.0
yeare8 1.265 0.090 14.1
Correlation of Fixed Effects:

(Intr)
yeard8 -0.234
library(effects)

plot(allEffects(linearmodel), lines = T)
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year(08 effect plot
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L ]
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year0s

MathAvgScore

anova(quadmodel, linearmodel)

Data: chart_long

Models:

quadmodel: MathAvgScore ~ 1 + year@8 + I(year08”2) + (1 | schoolnum)

linearmodel: MathAvgScore ~ 1 + year@8 + (1 + year@8 | schoolnum)
npar AIC BIC loglLik -2*log(L) Chisq Df Pr(>Chisq)

quadmodel 5 10302 10330 -5146 10292

linearmodel 6 10348 10381 -5168 10336 0 1 1

(a) Is it ok to do a likelihood ratio test here? How many parameters are estimated by
each model? How do the AIC/BIC values compare? Which model do you recommend?

Another option is a piecewise function. With three time points this means we allow one slope
from 2008 to 2009 and a different slope from 2009 to 2010. Create an indicator variable for
2009 and another for 2010. Include these two indicator variables (but not year08) in the model,
with random intercepts (only).

head(chart_long$yearos8)

[1] 012012

chart_long$ind2009 = as.numeric(chart_long$yeare8 == 1)
head(chart_long$ind2009)

[1] 0100180

chart_long$ind2010 = as.numeric(chart_long$yeare8 == 2)
head(chart_long$ind2010)

[1] 001001

(b) Why do the previous commands work?
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piecemodel = 1lmer(MathAvgScore ~ ind2009 + ind2010 + (1 | schoolnum), data = chart_

long)

summary(piecemodel, corr=F)

Linear mixed model fit by REML ['lmerMod']

Formula: MathAvgScore ~ ind2009 + ind2010 + (1 | schoolnum)
Data: chart_long

REML criterion at convergence: 10297
Scaled residuals:

Min 1Q Median 3Q Max
-3.213 -0.476 ©0.009 0.469 3.495

Random effects:

Groups Name Variance Std.Dev.
schoolnum (Intercept) 43.05 6.56
Residual 8.52 2.92

Number of obs: 1733, groups: schoolnum, 618

Fixed effects:
Estimate Std. Error t value

(Intercept) 651.741 0.293 2222.75
ind2009 0.202 0.175 1.15
ind2010 2.540 0.175 14.50
#Llibrary(effects)
plot(allEffects(piecemodel))
ind2009 effect plot ind2010 effect plot
] ] ] ] ] ] ] ] ] ] ] ]
653.4 - - 652.0
5530 - N 6545 B
6540 B
g 653.0 - %
0 & 653.5 B
m 692.8 - o)
ég f? 653.0 B
g %207 | 8 6525 - -
6524 652.0 -
6522 - 6515 - n
- - - -
0.00.2.40.80.81.0 0.00.2.40.80.81.0

ind2009 ind2010
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fits = fitted.values(piecemodel)
scatter.smooth(fits ~ chart_long$yearos8)

Wednesday, Nov. 12

fits
630 640 650 660
| | |
— O GO

— e DO

0.0 0.5 1.0
chart_long$year08

AIC(linearmodel, quadmodel, piecemodel)

df AIC

linearmodel 6 10352

quadmodel 5 10308

piecemodel 5 10307

BIC(linearmodel, quadmodel, piecemodel)
df BIC

linearmodel 6 10384

quadmodel 5 10335

piecemodel 5 10334

— i IOED

1.5 2.0

(c) How do you interpret the coefficient of ind2010? Compare this model to the
quadratic model — does it describe a similar time trend? How so? How do the AIC/BIC

values compare?

(d) Give a “modelling” reason to prefer the linear model to the quadratic or piecewise

linear models.

Notes:

*  Keep in mind the importance of the interpretability of your model, especially to non-

statisticians.

*  You can also consider functions that allow for “exponential growth”
« Also consider how well your model can extrapolate. It is definitely riskier to extrapolate

with quadratic models.
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*  From Finch and Bolin (2017): Modeling longitudinal data in a multilevel framework has a
number of advantages over more traditional methods of longitudinal analysis (e.g. ANOVA
designs). For example, using a multilevel approach allows for the simultaneous modeling
of both intraindividual change (how an individual changes over time), as well as
interindividual change (differences in this temporal change across individuals). A
particularly serious problem that afflicts many longitudinal studies is high attrition within
the sample. Quite often, it is difficult for researchers to keep track of members of the
sample over time, especially over a lengthy period of time. When using traditional
techniques for longitudinal data analysis such as repeated measures ANOVA, only
complete data cases can be analyzed. Thus, when there is a great deal of missing data,
either a sophisticated missing data replacement method (e.g. multiple imputation) must be
employed, or the researcher must work with a greatly reduced sample size. In contrast,
multilevel models are able to use the available data from incomplete observations, thereby
not reducing sample size as dramatically as do other approaches for modeling longitudinal
data, nor requiring special missing data methods.



