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Stat 414 - Day 15 
Longitudinal Models (Ch. 15) 

Previously 

Have data nested within groups. Want to include the grouping variable in the model. Including 
it as random intercepts gives us a multilevel model, which has advantages including 

• Allows separation of within group and between group variation 

• Allows for inclusion of Level 1 and Level 2 variables 

• Induces/Estimates within group correlation 

• Including random slopes models heterogeneous responses (Level 2) 

• Including cross-level interactions can explain variation in slopes (Level 2 equation) 

• Does not require equal group sizes/handles missing values well 

Multilevel models are especially helpful for “longitudinal data” (e.g., repeat observations on the 
same individual over time). Typically with longitudinal data we want to focus on changes over 
time and the effect of Level 2 variables. (We’ve actually already been looking at repeated 
measures data, but you will see some different terminology come up.) 

Example 1: Minnesota schools 

Data were collected by the Minnesota Department of Education for all Minnesota schools 
during the years 2008-2010 to compare charter and non-charter schools. School performance 
is measured by the mean score on the math portion of the Minnesota Comprehensive 
Assessment (MCA-II) data for the 6th grade students enrolled in 618 different Minnesota 
schools during the years 2008, 2009, and 2010. (MCA test scores for sixth graders are scaled 
to fall between 600 and 700, where scores above 650 for individual students indicate “meeting 
standards.” Thus, schools with averages below 650 will often have increased incentive to 
improve their scores the following year.) 

Explore the data 

(a) Identify the Level 1 and Level 2 units. 
Level 1 units = measurement occassions; Lever 2 units = schools 

First we want to explore how MCA math test scores relate to important Level 2 variables. This 
can be done using the data values for all three years or by averaging the data values for the 
three years into one number, or by using the 2010 values. 

(b) What assumption is made by these last 2 approaches? Reasonable? 

That year to year variation in the values is small enough to ignore them. Probabiilty a reasonable 
assumption. In general, we will want to classify variables as time varying (level 1) or time invariant 
(level 2). 

For the second approach, open the “wide format” of the data (chart.wide.txt, this includes three 
columns for the three time points for each school) and use the SchoolAvg variable as the 
response. Examine the associations of these variable with several of the Level 2 variables. 
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  schoolID                   schoolid                         schoolName urban 
1     1141    Dtype 1 Dnum 704 Snum 2        A.I. JEDLICKA MIDDLE SCHOOL     1 
2     1636  Dtype 7 Dnum 4073 Snum 10 ACADEMIA CESAR CHAVEZ CHARTER SCH.     1 
3      362 Dtype 1 Dnum 2396 Snum 150     ACGC ELEMENTARY GRADES 5 AND 6     0 
4     1582  Dtype 7 Dnum 4018 Snum 10           ACHIEVE LANGUAGE ACADEMY     1 
5      959  Dtype 1 Dnum 625 Snum 410            ADAMS MAGNET ELEMENTARY     1 
6      821   Dtype 1 Dnum 511 Snum 15                      ADRIAN MIDDLE     0 
  charter schPctnonw schPctsped schPctfree MathAvgScore.0 MathAvgScore.1 
1       0    0.01600     0.1040     0.2320          651.1          650.3 
2       1    0.00000     0.1429     0.9286          634.5          640.1 
3       0    0.01667     0.1333     0.4833          652.3          647.5 
4       1    0.91111     0.2000     0.8889          646.4          649.3 
5       0    0.67105     0.1053     0.4474          654.0          651.5 
6       0    0.05556     0.1389     0.4444          649.7          651.0 
  MathAvgScore.2 SchoolAvg 
1          653.9     651.8 
2          640.3     638.3 
3          655.4     651.7 
4          650.6     648.8 
5          650.0     651.8 
6          658.2     653.0 
               MathAvgScore.0 MathAvgScore.1 MathAvgScore.2 
MathAvgScore.0         1.0000         0.8064         0.7727 
MathAvgScore.1         0.8064         1.0000         0.8331 
MathAvgScore.2         0.7727         0.8331         1.0000 
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(c) Which variable(s) seem(s) most useful in predicting the average math score? 

percentage free lunch, maybe percentage nonwhite (but check out the zeros virst), maybe percentage 
special ed (but check out the zeros and ones first), charter vs. public 

Now open the “long format” of the data. 

 [1] "obsNum"       "distschNum"   "year08"       "districtType" "MathAvgScore" 
 [6] "MonPerChild"  "schoolName"   "schPctnonw"   "schPctsped"   "schPctfree"   
[11] "city"         "urban"        "charter"      "schoolnum"    
  obsNum              distschNum year08 districtType MathAvgScore MonPerChild 
1      1   Dtype 1 Dnum 1 Snum 2      0            1        652.8        8000 
2      2   Dtype 1 Dnum 1 Snum 2      1            1        656.6        8266 
3      3   Dtype 1 Dnum 1 Snum 2      2            1        652.6        8119 
4      4 Dtype 1 Dnum 100 Snum 1      0            1        646.9        7682 
5      5 Dtype 1 Dnum 100 Snum 1      1            1        645.3        8511 
6      6 Dtype 1 Dnum 100 Snum 1      2            1        651.9        8357 
             schoolName schPctnonw schPctsped schPctfree      city urban 
1 RIPPLESIDE ELEMENTARY     0.0000     0.1176     0.3627    Aitkin     0 
2 RIPPLESIDE ELEMENTARY     0.0000     0.1176     0.3627    Aitkin     0 
3 RIPPLESIDE ELEMENTARY     0.0000     0.1176     0.3627    Aitkin     0 
4  WRENSHALL ELEMENTARY     0.0303     0.1515     0.4242 Wrenshall     0 
5  WRENSHALL ELEMENTARY     0.0303     0.1515     0.4242 Wrenshall     0 
6  WRENSHALL ELEMENTARY     0.0303     0.1515     0.4242 Wrenshall     0 
  charter schoolnum 
1       0         1 
2       0         1 
3       0         1 
4       0         2 
5       0         2 
6       0         2 

(d) Explain what year08 represents. 
The number of years since 2008 

Create two visual representations of math scores vs. time for the first 20 schools: 

• separate graphs for each school 
• connecting lines or smoothers for each school overlaid on same graph (i.e., “spaghetti 

plot”) 
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#   separate graphs for each school (first 20 schools = 60 observations) 
ggplot(data = chart_long[1:57,], aes(y = MathAvgScore, x = year08)) +  
  geom_line() +  
  facet_wrap(~schoolnum) + 
  theme_bw() 

 
#   connecting lines or smoothers for each school (1st 200) overlaid on same graph 
(i.e., "spaghetti plot") 
ggplot(data = chart_long[1:600,], aes(y = MathAvgScore, x = year08, group = schooln
um)) +  
         geom_line() +  
        geom_smooth(aes(group=1),color="green",size=1, se=F) + 
         theme_bw() 
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(e) Does the change over time in the average math score look linear? Does it look like 
we will want to include random intercepts? (Meaning?) Does it look like we will want to 
include random slopes? (Meaning?) 

Yes to random intercepts: the school averages vary a lot in 2008. Maybe not random slopes as the rate 
of change from year to year doesn’t seem to change as much as school to school. 

Produce a graph of the Math scores vs. year, separated by the charter (charter = 1) vs. public 
(charter = 0) schools. 

#charter = 1, public = 0 
ggplot(data = chart_long, aes(y = MathAvgScore, x = year08)) +  
  geom_line(aes(group=schoolnum)) + 
  facet_wrap(.~charter) + 
  geom_smooth(aes(group=1),color="green",size=1, method="loess", se = F) + 
  theme_bw() 
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#SEE ALSO 
boxplot(MathAvgScore ~ year08*charter, data = chart_long) 

 

(f) What do you learn? 

Lower 2008 averae scores for charter schools but maybe steeper slopes (year to year growth) than for 
public schools. 
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Modelling 

Fit the null model. 
#null model - using lmer 
model0 = lmer(MathAvgScore ~ 1 + (1 | schoolnum), data = chart_long); summary(model
0) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + (1 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10530 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.157 -0.495  0.014  0.513  3.569  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 schoolnum (Intercept) 41.9     6.47     
 Residual              10.6     3.25     
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  652.746      0.273    2395 
performance::icc(model0) 
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.798 
  Unadjusted ICC: 0.798 
pred <- ggpredict(model0, terms = "schoolnum [all]", type = "random")     
pred_df <- as.data.frame(pred) 
ggplot(pred_df, aes(x = x, y = predicted)) + 
  geom_point(size = 1) + 
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0) + 
  labs(y = "Estimated mean", x = "schoolnum") + 
  theme_bw() 
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(g) What is the ICC for these data? What does this tell you? Does this model adequately 
capture the behavior of our longitudinal data? 

ICC = 0.798, so about 80% of variation in 2008 in math scores is between schools rather than within, 
and the correlation of two observations (measurement occassions) for the same school is 0.80. 

#Changing to lme to get the variance-covariance matrix of the (predicted) responses 
#library(nlme) 
model0b = lme(MathAvgScore ~ 1, random = ~ 1 | schoolnum, data = chart_long); summa
ry(model0) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + (1 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10530 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.157 -0.495  0.014  0.513  3.569  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 schoolnum (Intercept) 41.9     6.47     
 Residual              10.6     3.25     
Number of obs: 1733, groups:  schoolnum, 618 
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Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  652.746      0.273    2395 
getVarCov(model0b, type = "conditional") 
schoolnum 1  
Conditional variance covariance matrix 
      1     2     3 
1 10.57  0.00  0.00 
2  0.00 10.57  0.00 
3  0.00  0.00 10.57 
  Standard Deviations: 3.251 3.251 3.251  
getVarCov(model0b, type = "marginal") 
schoolnum 1  
Marginal variance covariance matrix 
      1     2     3 
1 52.44 41.87 41.87 
2 41.87 52.44 41.87 
3 41.87 41.87 52.44 
  Standard Deviations: 7.242 7.242 7.242  
cov2cor(getVarCov(model0b, type = "marginal")[[1]]) 
       1      2      3 
1 1.0000 0.7984 0.7984 
2 0.7984 1.0000 0.7984 
3 0.7984 0.7984 1.0000 

Key Idea 

The “exchangeability assumption” assumes the correlation between any two observations in 
the same cluster are the same. This is often not an appropriate assumption with longitudinal 
data (measures over time). 

(h) How do we get variances and correlations to change over time? 

Random slopes 

Add Time 
#using lmer for ggpredict 
model1 = lmer(MathAvgScore ~ 1 + year08 + (1 | schoolnum), data = chart_long) 
summary(model1, corr=FALSE) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + year08 + (1 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10346 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.168 -0.461  0.014  0.471  3.602  
 
Random effects: 



Fall, 2025  Wednesday, Nov. 12 

 Groups    Name        Variance Std.Dev. 
 schoolnum (Intercept) 42.86    6.55     
 Residual               8.91    2.98     
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept) 651.3898     0.2895  2250.1 
year08        1.2799     0.0895    14.3 
performance::r2(model1, by_group = TRUE) 
# Explained Variance by Level 
 
Level     |     R2 
------------------ 
Level 1   |  0.158 
schoolnum | -0.024 
#within school variance decreased from 10.57 to 8.906 (10.57 - 8.906)/10.57 = 0.157 
#library(ggeffects) 
plot(ggpredict(model1, terms = c("year08", "schoolnum [sample = 9]"), type = "rando
m"), show_ci=FALSE) 

 
performance::check_model(model1) 
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#usine lme for variance-covariance matrix 
model1b = lme(MathAvgScore ~ 1 + year08, random = ~ 1  | schoolnum, data = chart_lo
ng); summary(model1b) 
Linear mixed-effects model fit by REML 
  Data: chart_long  
    AIC   BIC logLik 
  10354 10375  -5173 
 
Random effects: 
 Formula: ~1 | schoolnum 
        (Intercept) Residual 
StdDev:       6.547    2.984 
 
Fixed effects:  MathAvgScore ~ 1 + year08  
            Value Std.Error   DF t-value p-value 
(Intercept) 651.4    0.2895 1114  2250.1       0 
year08        1.3    0.0895 1114    14.3       0 
 Correlation:  
       (Intr) 
year08 -0.326 
 
Standardized Within-Group Residuals: 
     Min       Q1      Med       Q3      Max  
-3.16755 -0.46088  0.01414  0.47079  3.60218  
 
Number of Observations: 1733 
Number of Groups: 618  
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cov2cor(getVarCov(model1b, type = "marginal")[[1]]) 
      1     2     3 
1 1.000 0.828 0.828 
2 0.828 1.000 0.828 
3 0.828 0.828 1.000 

Unconditional growth model 

Adding time is not enough to model heterogeneity, need random slopes… With longitudinal 
data, we usually we start with the “unconditional growth model” (time is only Level 1 variable, 
we haven’t “conditioned” or “controlled” for any other possible covariates): multilevel model 
with year08, random intercepts, and random slopes. (Be sure to use schoolnum, which are 
unique, not school name): 

𝑚𝑎𝑡ℎ𝑠𝑐𝑜𝑟𝑒𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑦𝑒𝑎𝑟08𝑖𝑗 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

#using lmer for ggpredict 
#replacing earlier model1  
model1 = lmer(MathAvgScore ~ 1 + year08 + (1 + year08| schoolnum), data = chart_lon
g) 
summary(model1, corr=FALSE) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + year08 + (1 + year08 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10340 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.158 -0.467  0.018  0.460  3.497  
 
Random effects: 
 Groups    Name        Variance Std.Dev. Corr 
 schoolnum (Intercept) 39.441   6.280         
           year08       0.111   0.332    0.72 
 Residual               8.820   2.970         
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  651.408      0.279  2332.0 
year08         1.265      0.090    14.1 
#within school variance decreased from 10.57 to 8.906 (10.57 - 8.82)/10.57 = 0.166 
 
#library(ggeffects) 
plot(ggpredict(model1, terms = c("year08", "schoolnum [sample = 9]"), type = "rando
m"), show_ci=FALSE) 



Fall, 2025  Wednesday, Nov. 12 

 
performance::check_model(model1) 

 
#usine lme for variance-covariance matrix 
model1b = lme(MathAvgScore ~ 1 + year08, random = ~ 1 + year08 | schoolnum, data = 
chart_long); summary(model1b) 
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Linear mixed-effects model fit by REML 
  Data: chart_long  
    AIC   BIC logLik 
  10352 10384  -5170 
 
Random effects: 
 Formula: ~1 + year08 | schoolnum 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev Corr   
(Intercept) 6.280  (Intr) 
year08      0.332  0.724  
Residual    2.970         
 
Fixed effects:  MathAvgScore ~ 1 + year08  
            Value Std.Error   DF t-value p-value 
(Intercept) 651.4   0.27934 1114  2331.9       0 
year08        1.3   0.08997 1114    14.1       0 
 Correlation:  
       (Intr) 
year08 -0.234 
 
Standardized Within-Group Residuals: 
     Min       Q1      Med       Q3      Max  
-3.15786 -0.46676  0.01796  0.45956  3.49726  
 
Number of Observations: 1733 
Number of Groups: 618  
cov2cor(getVarCov(model1b, type = "marginal")[[1]]) 
       1      2      3 
1 1.0000 0.8223 0.8261 
2 0.8223 1.0000 0.8332 
3 0.8261 0.8332 1.0000 

(i) Describe what this model is doing. What assumptions does this model make about 
the “occasion-specific” residuals? Does that seem like a reasonable assumption in this 
context? Interpret the variance components (and covariance). What can you tell me 
about the populations of intercepts and slopes? How would you determine the 
percentage of within-school variation explained by the linear increase over time? How 
else can we evaluate the model? 
The model assumes that once you account for the multiple time points the observations are now 
independent (‘conditional indepencen’). We note there is much mroe school to school variation in 
intercepts than in slopes. We assume the population distribution of intercepts across schools is 
normally distribution with mean 651.41 and variance 39.44. We assume the population distribution of 
slopes across schools is normally distribution with mean 1.265 and variance 0.1105. Positive covariance 
between intercepts and slopes: schools with higher avg scores in 2008 tend to have larger increases in 
avg score year to year than schools with lower 2008 avg scores. If we compare this model to the null 
model, 𝜎̂2 has decreased from 10.57 to 8.82 (16%). The residual plots look ok though a few influential 
observations to check out. Could also look more into the normality of the random effects. 
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Adding a Level 2 Variable 

Include charter (charter schools = 1, public schools = 0) as a Level 2 variable (for both level 
equations, i.e., fixed effect and cross-level interaction with year08). 
model2 = lmer(MathAvgScore ~ year08 + charter + charter:year08 + (year08 | schoolnu
m), data = chart_long);summary(model2, corr=FALSE) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ year08 + charter + charter:year08 + (year08 |   
    schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10292 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.193 -0.471  0.013  0.466  3.459  
 
Random effects: 
 Groups    Name        Variance Std.Dev. Corr 
 schoolnum (Intercept) 35.832   5.986         
           year08       0.131   0.362    0.88 
 Residual               8.784   2.964         
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
               Estimate Std. Error t value 
(Intercept)    652.0584     0.2845 2292.00 
year08           1.1971     0.0943   12.70 
charter         -6.0184     0.8656   -6.95 
year08:charter   0.8557     0.3143    2.72 

(j) Summarize the charter effect on the intercepts and the charter effect on the slopes. 
(Consistent with the graphs above?) Is either statistically significant? (Be very clear 
how you are deciding.) How much school-to-school variation in the intercepts has been 
explained by the charter school variable? What about the slopes? 
In 2008, charter schools averaged lower average scores (by 6.018) than the non-charter schools 
(consistent with the lower intercept of the greem model in the graph). Charter schools have a larger 
rate of increase in average scores over the 3 years than public schools, on average. The difference 
between charter and public schools decreases from 2008 to 2019 (on average). About 9% of the 
variation in intercepts is explained, but variation in slopes actually increases. Total variance goes from 
39.44 + .11 + 8.82 = 48.37 to (35.83 + .13 + 8.78) = 44.74) 

Relaxing the linearity assumption 

The graphs of average scores over time indicated that there appeared to potentially be a 
nonlinear trend. There are many ways to relax the linearity assumption but first we will just 
consider a quadratic effect of time. 

(k) If we plan to use 𝑡𝑖𝑚𝑒 and 𝑡𝑖𝑚𝑒2, do we need to center time first? 
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Not necessary here, is pretty much close to centered already. 

(l) Write out the Level 1 and Level 2 equations that include 𝑡𝑖𝑚𝑒 and 𝑡𝑖𝑚𝑒2, but only allow 
the intercepts to vary. What assumptions is this “unconditional quadratic growth model” 
imposing on the time trends? 

𝑦𝑖𝑗 = 𝛽 + 0𝑗 + 𝛽1𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑡𝑖𝑚𝑒𝑖𝑗
2 + 𝜖𝑖𝑗 and 𝛽0𝑗 = 𝛽00 + 𝑢0𝑗. We are assuming each school has the 

same quadratic trend, just different intercepts. 

Fit and interpret the model specified in (l). 

summary(quadmodel <- lmer(MathAvgScore ~ 1 + year08 + I(year08^2) + (1 | schoolnum)
, data=chart_long), corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + year08 + I(year08^2) + (1 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10298 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.213 -0.476  0.009  0.469  3.495  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 schoolnum (Intercept) 43.05    6.56     
 Residual               8.52    2.92     
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  651.741      0.293 2222.75 
year08        -0.867      0.315   -2.75 
I(year08^2)    1.068      0.150    7.10 
logLik(quadmodel) 
'log Lik.' -5149 (df=5) 
library(effects) 
plot(allEffects(quadmodel)) 
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plot(ggpredict(quadmodel, terms = c("year08", "schoolnum [sample = 9]"), type = "ra
ndom"), show_ci=FALSE) 
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(m) Is the quadratic effect statistically significant? How do you interpret the sign of the 
coefficient of this term? 

Yes, t = 7.101. The coefficients are negative then positive, indicatign a dip from 2008 to 2009 and then 
an increase in 2010 (like an interaction with time, the improvement over time increases with time). 

Consider the Level 1 and Level 2 equations that include 𝑡𝑖𝑚𝑒 and 𝑡𝑖𝑚𝑒2, allowing the slopes 
and intercepts to vary, but with no Level 2 covariates. 

#summary(testmodel <- lmer(MathAvgScore ~ 1 + year08 + I(year08^2) + (1 + year08 + 
I(year08^2) | schoolnum), data=chart_long)) 

(n) Can we fit the suggested model? 
No because we only have 3 data values per school, so we don’t have enough degrees of freedom to fit 
a different quadratic model per school 

Computer problem 15 - due Monday, 7am 

Compare the quadratic model to the model that is only linear in time, but with random slopes. 
summary(linearmodel <- lmer(MathAvgScore ~ 1 + year08  + (1 + year08 | schoolnum), 
data=chart_long)) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ 1 + year08 + (1 + year08 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10340 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.158 -0.467  0.018  0.460  3.497  
 
Random effects: 
 Groups    Name        Variance Std.Dev. Corr 
 schoolnum (Intercept) 39.441   6.280         
           year08       0.111   0.332    0.72 
 Residual               8.820   2.970         
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  651.408      0.279  2332.0 
year08         1.265      0.090    14.1 
 
Correlation of Fixed Effects: 
       (Intr) 
year08 -0.234 
library(effects) 
plot(allEffects(linearmodel), lines = T) 
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anova(quadmodel, linearmodel) 
Data: chart_long 
Models: 
quadmodel: MathAvgScore ~ 1 + year08 + I(year08^2) + (1 | schoolnum) 
linearmodel: MathAvgScore ~ 1 + year08 + (1 + year08 | schoolnum) 
            npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq) 
quadmodel      5 10302 10330  -5146     10292                     
linearmodel    6 10348 10381  -5168     10336     0  1          1 

(a) Is it ok to do a likelihood ratio test here? How many parameters are estimated by 
each model? How do the AIC/BIC values compare? Which model do you recommend? 

Another option is a piecewise function. With three time points this means we allow one slope 
from 2008 to 2009 and a different slope from 2009 to 2010. Create an indicator variable for 
2009 and another for 2010. Include these two indicator variables (but not year08) in the model, 
with random intercepts (only). 

head(chart_long$year08) 
[1] 0 1 2 0 1 2 
chart_long$ind2009 = as.numeric(chart_long$year08 == 1) 
head(chart_long$ind2009) 
[1] 0 1 0 0 1 0 
chart_long$ind2010 = as.numeric(chart_long$year08 == 2) 
head(chart_long$ind2010) 
[1] 0 0 1 0 0 1 

(b) Why do the previous commands work? 
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piecemodel = lmer(MathAvgScore ~ ind2009 + ind2010 + (1 | schoolnum), data = chart_
long) 
summary(piecemodel, corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: MathAvgScore ~ ind2009 + ind2010 + (1 | schoolnum) 
   Data: chart_long 
 
REML criterion at convergence: 10297 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-3.213 -0.476  0.009  0.469  3.495  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 schoolnum (Intercept) 43.05    6.56     
 Residual               8.52    2.92     
Number of obs: 1733, groups:  schoolnum, 618 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  651.741      0.293 2222.75 
ind2009        0.202      0.175    1.15 
ind2010        2.540      0.175   14.50 
#library(effects) 
plot(allEffects(piecemodel)) 
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fits = fitted.values(piecemodel) 
scatter.smooth(fits ~ chart_long$year08) 

 
AIC(linearmodel, quadmodel, piecemodel) 
            df   AIC 
linearmodel  6 10352 
quadmodel    5 10308 
piecemodel   5 10307 
BIC(linearmodel, quadmodel, piecemodel) 
            df   BIC 
linearmodel  6 10384 
quadmodel    5 10335 
piecemodel   5 10334 

(c) How do you interpret the coefficient of ind2010? Compare this model to the 
quadratic model – does it describe a similar time trend? How so? How do the AIC/BIC 
values compare? 

(d) Give a “modelling” reason to prefer the linear model to the quadratic or piecewise 
linear models. 

Notes: 
• Keep in mind the importance of the interpretability of your model, especially to non-

statisticians. 
• You can also consider functions that allow for “exponential growth” 
• Also consider how well your model can extrapolate. It is definitely riskier to extrapolate 

with quadratic models. 
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• From Finch and Bolin (2017): Modeling longitudinal data in a multilevel framework has a 
number of advantages over more traditional methods of longitudinal analysis (e.g. ANOVA 
designs). For example, using a multilevel approach allows for the simultaneous modeling 
of both intraindividual change (how an individual changes over time), as well as 
interindividual change (differences in this temporal change across individuals). A 
particularly serious problem that afflicts many longitudinal studies is high attrition within 
the sample. Quite often, it is difficult for researchers to keep track of members of the 
sample over time, especially over a lengthy period of time. When using traditional 
techniques for longitudinal data analysis such as repeated measures ANOVA, only 
complete data cases can be analyzed. Thus, when there is a great deal of missing data, 
either a sophisticated missing data replacement method (e.g. multiple imputation) must be 
employed, or the researcher must work with a greatly reduced sample size. In contrast, 
multilevel models are able to use the available data from incomplete observations, thereby 
not reducing sample size as dramatically as do other approaches for modeling longitudinal 
data, nor requiring special missing data methods. 


