Fall, 2025 Wednesday, Nov. 5

Stat 414 - Day 13

Random Slopes/Logistic Regression

Last Time: Multiple random slopes

+ Adding random slopes induces unequal diagonal values and non-identical off-diagonal in
the variance-covariance matrix of the y;; (marginal) vs. conditional €;;

« Var(Yy) =14 + 2t01x; + 1ixf + 0?

«  Variance of response is quadratic function of explanatory variable

» Impacted by choice of scaling (origin) of x variable

«  Smallest when x = —1,, /7% (correlation vs. covariance)

- Cov of two individuals in the same group: 73 + Ty (x;; + xx;) + T2 (x;jxkj)

»  Covariance between two observations (in same level 2 group) depends on the
corresponding x-values

* No simple ICC (depends on x)

+ Simplest: use x =0

* Corr(Yy,Yy;) = Cov(Yy, Yi;)/SD(Y;;)SD(Yi)

« Each random slope adds a slope variance parameter, plus covariances with intercepts
(e.g., 191) and any other random slopes.

*  Try to minimize use of random slopes or model gets very complicated very quickly

«  Can zero out covariances to simplify model but makes sense in context?

* Centering variables can sometimes help with convergence

Example 1: A bit more on PISA data

Let’s try to understand the correlations of random effects a bit more. Reconsider the PISA data
predicting (standardized) reading scores.
ReadingScores = read.table("https://www.rossmanchance.com/stat414/data/ReadingScore
s.txt", header=T)
ReadingScores2 <- ReadingScores |>

filter(!(schoolid %in% c(139, 350)))
ReadingScores2$schoolid <- factor(ReadingScores2$schoolid)

modeld4 = lmer(z_read ~ cen_pos + cen_escs + female
+ (1 + cen_escs + female| schoolid),
data = ReadingScores2, REML = F)
summary(model4, corr = FALSE)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: z_read ~ cen_pos + cen_escs + female + (1 + cen_escs + female |
schoolid)
Data: ReadingScores?2

AIC BIC loglLik -2*log(L) df.resid
34069 34151 -17023 34047 13548

Scaled residuals:
Min 1Q Median 3Q Max
-4.290 -0.642 ©0.059 0.692 3.113
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Random effects:

Groups  Name Variance Std.Dev. Corr
schoolid (Intercept) ©.1872 0.433
cen_escs 0.0178 0.134 -0.41
female 0.0222 0.149 -0.49 -0.26
Residual 0.6707 0.819

Number of obs: 13559, groups: schoolid, 354

Fixed effects:
Estimate Std. Error t value
(Intercept) -0.215844 0.025688 -8.40

cen_pos 0.002245 0.000792 2.83
cen_escs 0.314805 0.018966 16.60
female 0.402269 0.017990 22.36

head(ranef(model4)[[1]])
(Intercept) cen_escs female
1 -0.1077 -0.022585 0.06483
2 -0.1989 0.029782 -0.02883
3 1.3355 -0.206826 -0.19889
4 0.7491 -0.103881 -0.07902
5 0.3300 0.009428 -0.08622
6 0.2113 0.061889 -0.08942
par(mfrow=c(1,3))
plot(ranef(modeld)$schoolid[, " (Intercept)"]~ ranef(modeld)[[1]]$cen _escs)
plot(ranef(modeld)[[1]][,1]~ ranef(model4)[[1]]$female)
plot(ranef(modeld)[[1]]$female~ ranef(modeld)[[1]]$cen_escs)
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par(mfrow=c(1,1))

(a) How do we interpret each covariance?

-0.41: covariance between intercepts (z_read for males with average escs, average pos) and escs
slopes: schools with higher performance for average males tend to have smaller effect of escs. -0.49:
schools with higher performance for average males tend to have smaller gender gaps. Schools with
larger escs effects tend to have smaller gender gaps.

It's a little crowded to graph every single line, so let’s see if we can see the pattern from just a
few.

library(ggeffects)

library(patchwork)

pl <- plot(ggpredict(model4,
terms=c("cen_escs", "schoolid [sample = 9]"),
type = "random"), show_ci = FALSE)

p2 <- plot(ggpredict(model4,
terms=c("female", "schoolid [sample = 9]"),
type = "random"), show_ci = FALSE)

pl + p2
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Predicted values of z_read Predicted values of z_re
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plot(ggpredict(model4,
terms = c("female [-2:2 by=0.1]", "schoolid [sample=9]"),
type = "random"

), show_ci=FALSE)
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(b) Do the plots confirm the interpretations in (a)? What if you rerun the plot? Why is the
last plot helpful?

Compare the intercepts (x=0) and slopes of 9 schools, the last one was helpful to expand the x-scale to
better see the pattern in the visual. Rerunning the R command will randomly select 9 different schools

(c) Do any of these school reflect the last covariance?

ReadingScores2 |>
dplyr::filter(schoolid %in% c(312, 181, 197, 23, 230, 117)) |>
ggplot(aes(x = cen_escs, y = z_read, color = factor(female))) +
geom_point(alpha = 0.4) +
geom_smooth(method = "1lm", se = FALSE) + # separate lLines for M/F
geom_smooth(method = "1lm", se = FALSE, color = "black") + # overall Lline
facet_wrap(~ schoolid, ncol = 3) +
labs(x = "Centered ESCS",

y = "Reading z-score",
color = "Sex") +
theme_bw()
23 117 1381

S RN sevnlil| BRRE=Y >

i
Lad
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Sex

197 230 312 0

Reading z-score
=]
-y

2401 2401 210 1
Centered ESCS
In school 23 we see a larger gender gap and a smaller slope of escs. In school 230 we see a smaller
gender gap and a larger effect of escs.
What if | didn’t want to model the random slopes as correlated?

(d) Is there anything beneficial/wrong with the following?
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model5 = lmer(z_read ~ cen_pos + cen_escs
+ (1 + cen_escs | schoolid)
data = ReadingScores2, REML

summary(model5, corr = FALSE)

Wednesday, Nov. 5

+ female
+ (1 + female| schoolid),

F)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: z_read ~ cen_pos + cen_escs + female + (1 + cen_escs | schoolid) +

(1 + female | schoolid)
Data: ReadingScores2

AIC BIC loglLik -2*log(L) df.resid
34070 34153 -17024 34048 13548
Scaled residuals:
Min 1Q Median 3Q Max
-4.354 -0.641 ©0.061 0.691 3.121
Random effects:
Groups Name Variance Std.Dev. Corr
schoolid (Intercept) 0.0687 0.262
cen_escs 0.0177 0.133 -0.78
schoolid.1l (Intercept) ©.1236 ©.352
female 0.0226 0.150 -0.66
Residual 0.6707 0.819

Number of obs: 13559, groups:

Fixed effects:

Estimate Std. Error t value
-8.28
2.85
16.57
22.28

(Intercept) -0.215023 0.025980
cen_pos 0.002258 0.000792
cen_escs 0.314284 0.018963
female 0.401875 0.018035

schoolid, 354

optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = ©.0426803 (tol = 0.002, component 1)
You can force some of the covariances to be zero, but worth it? Is a little awkward here to have two

sets of random intercepts. Another option is:

Code
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model6é = lmer(z_read ~ cen_pos + cen_escs + female
+ (1 | schoolid) + (-1 + cen_escs | schoolid)
+ (-1 + female| schoolid),
data = ReadingScores2, REML = F)
summary(model6, corr = FALSE)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: z_read ~ cen_pos + cen_escs + female + (1 | schoolid) + (-1 +
cen_escs | schoolid) + (-1 + female | schoolid)
Data: ReadingScores2

AIC BIC loglLik -2*log(L) df.resid
34101 34161 -17042 34085 13551

Scaled residuals:
Min 1Q Median 3Q Max
-4.374 -0.642 ©.059 0.696 3.113

Random effects:
Groups Name Variance Std.Dev.
schoolid (Intercept) ©.1653 0.407
schoolid.1 cen_escs 0.0168 0.130
schoolid.2 female 0.0127 0.113
Residual 0.6722 0.820
Number of obs: 13559, groups: schoolid, 354

Fixed effects:
Estimate Std. Error t value
(Intercept) -90.225476 0.024392 -9.24

cen_pos 0.002096 0.000793 2.64
cen_escs 0.316631 0.018934 16.72
female 0.406249 0.017185 23.64

Example 2: Hedonism

A survey conducted by the 2002 European Social Surveys (ESS) measured an individual’s
level of hedonism (pleasure for oneself, high scores indicate more hedonistic beliefs (e.g.,
“doing things you enjoy is important”)). We have data from a “random sample” of 20 countries
in the European Union. Variables include respondent’s age (centered), respondent’s self-
reported gender (measured as male or female), respondent’s monthly income, respondent’s
education, and the average education level in the country.

library(haven)
hedonism <- read_dta("http://www.rossmanchance.com/stat414/data/hedonism.dta")
head(hedonism)
# A tibble: 6 x 10
country individual hedonism cons age female educ income countrycode
<dbl+1lbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+lbl>
1 1 [Austria] 2 0.762 1 49 0 14 2 1 [AUT]

2 1 [Austria] 4 -1.67 1 43 o 18 9 1 [AUT]
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3 1 [Austria] 5 1.14 1
4 1 [Austria] 6 1.5 1
5 1 [Austria] 8 -0.0480 1
6 1 [Austria] 9 1.07 1

# i 1 more variable: southern <dbl>
hist(hedonism$hedonism)
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modell <- lmer(hedonism ~ 1 + age + (1 + age | country), data

Histogram of hedonism$hedonism

40
62
40
46

OR KRR

[ [ [
4 2 0

hedonism$hedonism

summary (modell)
Linear mixed model fit by REML ['lmerMod']

Formula: hedonism ~ 1 + age + (1 + age | country)
hedonism

Data:

REML criterion at convergence: 76612

Scaled residuals:

Min

-4.137 -0.

1Q Median 3Q Max
651 ©.052 0.684 4.883

Random effects:

Groups
country

Residual
Number of

Name Variance Std.Dev.

(Intercept) ©.0891304 0.29855
age 0.0000201 0.00448

0.7871491 0.88721
obs: 29419, groups: country,

Fixed effects:

Corr

-0.05

20

15
11
17
16
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[AUT]
[AUT]
[AUT]

1
1
1
1 [AUT]
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Estimate Std. Error t value
(Intercept) 0.60224 0.06848 8.79

age -0.01759 0.00105 -16.80
Correlation of Fixed Effects:

(Intr)
age -0.104

optimizer (nloptwrap) convergence code: @ (OK)
Model failed to converge with max|grad| = 3.29975 (tol = ©.002, component 1)
Model is nearly unidentifiable: very large eigenvalue

- Rescale variables?
hedonism$age.c <- hedonism$age - mean(hedonism$age)
modell <- lmer(hedonism ~ 1 + age.c + (1 + age.c | country), data = hedonism)
summary(modell)
Linear mixed model fit by REML ['lmerMod']
Formula: hedonism ~ 1 + age.c + (1 + age.c | country)

Data: hedonism

REML criterion at convergence: 76610
Scaled residuals:

Min 1Q Median 3Q Max
-4.135 -0.651 ©0.052 0.683 4.886

Random effects:

Groups  Name Variance Std.Dev. Corr
country (Intercept) ©0.1011797 0.31809

age.c 0.0000208 0.00457 0.69
Residual 0.7873193 0.88731

Number of obs: 29419, groups: country, 20

Fixed effects:
Estimate Std. Error t value
(Intercept) -0.22050 0.07133  -3.09

age.c -0.01758 0.00106 -16.51
Correlation of Fixed Effects:

(Intr)
age.c 0.661

optimizer (nloptwrap) convergence code: @ (OK)
Model failed to converge with max|grad| = 0.205545 (tol = ©.002, component 1)
Model is nearly unidentifiable: very large eigenvalue
- Rescale variables?
plot(ggpredict(modell, terms=c("age.c", "country [sample = 9]"),
type = "random"), show ci = FALSE)
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Predicted values of Hedonism score

Country ID

Hedonism scaore

2

Age In years

(a) How would you interpret the slope coefficient of age and 3 in this model?

estimated slope of the average country line (don’t forget the average country line part). Country level
variance in mean hedonism at age 46.8 (age variable has been centered)

(b) Identify and interpret the ‘slope-intercept correlation’.

Note: Overall hedonism decreases with age, more so in some countries than others. Slope intercept
correlation is positive: countries with higher hedonism scores for average-aged individuals tend to
have a smaller decrease in hedonism with age.

Cool visual
hedonism <- hedonism %>%
mutate(
country code = as_factor(countrycode)
)

modell <- lmer(hedonism ~ 1 + age.c + (1 + age.c | country code),
data = hedonism)
re <- ranef(modell)$country code |>
tibble: :rownames_to column("country code")

intercepts = re[,"(Intercept)"] + fixef(modell)[1]
slopes = re[,"age.c"] + fixef(modell)[2]

ggplot(re, aes(y = slopes, x = intercepts, label = country_code)) +
geom_point() +
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geom_text(vjust = -0.5) +
labs(y = "Random slopes"”,
x = "Random intercepts") +

geom_hline(yintercept = -.0176) +
geom_vline(xintercept = -.2205) +
theme_bw()
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Random intercepts

(c) Describe the code to a non-statistics/non-R guru

Extracting out the random effects and attaching the country code labels to them. Converted the
random effects into the random slopes and random intercepts. The graph helps us see which countries
have above/below average intercepts and/or slopes. (The average intercept and average slope is
represented by the values of the fixed effects.)

(d) What can you tell me about countries like Australia (AUT) and Portugal (PRT)? What
can you tell me about countries like Hungary (HUN), the Netherlands (NLD) and
Switzerland (CHE)? What about Poland?

AUT and PRT have average hedonism score for the average-aged and average rate of decrease with
age. HUN, NLD, CHE have above average intercept (avg hedonism score for average-aged) and above
average (meaning less negative) ‘effect’ of age. Poland has below average hedonim score and more
drammtric decrease with age (starts low and decreases more quickly with age).

Code
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hedonism2 <- hedonism |>
mutate(
hedonism = as.numeric(hedonism),
age.c = as.numeric(age.c),
country code = as_factor(countrycode)
) >
dplyr::filter(country_code %in% c("AUT", "PRT", "HUN", "NLD", "CHE", "POL"))
ggplot(hedonism2, aes(x = age.c, y = hedonism)) +
geom_smooth(method = "1Im", se = FALSE) + # separate Llines
facet_wrap(~ country_code, ncol = 3) +
labs(x = "Centered Age",
y = "Hedonism Score") +
theme_bw()
AUT CHE HUM
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0.0 \ \
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1.0
D157
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o 2.0
E
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1.5
2.0
20 0 20 40 200 20 40 =20 0 20 40
Centered Age

Introduction to Logistic Regression
Example 1: Whickham data

Between 1972-1974 a survey was taken in the Whickham district of the United Kingdom
(Appleton et al., 1996; Simonoff, 2003), including information such as smoking status and age.
Twenty years later, a follow-up study was conducted, and it was determined whether the
interviewee was still alive. First consider the smokers and non-smokers:
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mymatrix = matrix(c(443, 139, 502, 230), ncol=2, dimnames = list(c("alive", "died")
, c("smokers", "non-smokers")))

mymatrix

smokers non-smokers
alive 443 502
died 139 230

(a) What is the response variable? Quantitative or categorical?
whether or not alive = categorical

There are several statistics we could use to compare the likelihood of being alive between the
smokers and non-smokers, including

« difference in conditional proportions (443/(443+139) - (502)/(502+230))

* relative risk = ratio of conditional proportions (443/(443+139) / (502)/(502+230))

* odds ratio = ratio of odds of success (443/139) / (502/203) where odds is the proportion
of successes divided by the proportion of failures, (443/582)/(139/582) /
(502/705)/(230/705)

The difference in conditional proportions has some limitations, namely if the success
probability is small, you will be working with small numbers and so it is difficult to look at the
difference and say “that’s large” or not. The relative risk helps you see whether one value is
large compared to the other value, but it is problematic to use with “case-control studies” (I find
some successes and | find some failures, so | can’t turn around and use the data to estimate
the probability of success.) Odds ratio doesn’t have either of these issues, but is more difficult
to interpret.

(b) Compute and interpret the odds ratio of being alive for smokers (numerator)
compared to non-smokers (denominator). Also report the percentage change (subtract
1 and multiply by 100 percent and report as a decrease).

FOUND THE TYPO: the 203 in the OR formula above needed to be 230. (And sample size is 732) odds
ratio = (443/139) / (502/230) 1.46 so smokers had 1.46 times higher odds of survival than non-
smokers. 1.46 - 1 = .46 x 100% => smokers had 46% higher odds of survival than non-smokers

You should be more bothered by these data suggesting that smoking is beneficial for your
health! So we want to “adjust” for possible confounding variables.

Consider the following data:

mymatrix2 = matrix(c(21, 114, 117-114, 29, 273, 281-273, 39, 209, 230-209, 49, 169,
208-169, 59, 145, 236-145, 69, 35, 165-35, 79, 0,77-0), nrow=3, dimnames = list(c("
midage", "alive", "died"), c("under 25", "25-35", "35-45", "45-55", "55-65", "65-75
", "over 75")))

mymatrix2

under 25 25-35 35-45 45-55 55-65 65-75 over 75
midage 21 29 39 49 59 69 79
alive 114 273 209 169 145 35 0

died 3 8 21 39 91 130 77
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Does probability of being alive appear to depend on the age at the first interview? Let’s
explore:

props = prop.table(mymatrix2[2:3,], margin=2)

par(mar = c(5,5,0,1) + 0.1) #the excess white space around the graphs is really sta
rting to annoy me

plot(props[1, ]~mymatrix2[1,])
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mymatrix2[1, ]

(c) Does there appear to be evidence that those who were older when they were first
interviewed were less likely to be alive at the follow-up interview? How would you
suggest modelling these data? Give some downsides to using a linear model in this
case.

Yes! linear model does likely work because this relationship is not linear and have to worry about
bounds on probabilities of 0 and 1.

Of course, when we have a relationship we want to fit a line, but that’s not appropriate here
(and generally not for proportions as the response) for two main reasons:

*+  We can’t extend the line much further without predicting probabilities below 0 or above 1
*  The relationship is usually not linear.

To solve the second issue, we want to transform the data or use a polynomial model. But
remember the transformations we saw before were for “monotonic” relationships. With
proportions, we tend to see more of an “S-shaped” curve where the “response” values
approach zero in one direction and approach one in the other direction. So we will use a
different kind of transformation.
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Definition

The logit transformation is ln(n/(l - n)) which is equivalent to the log odds of success.

#We have to do something about the zero. I'm just going to put in 1 there for now.
props[,7] = c(.193, .987)

logodds= log(props[1,]/props[2,])

par(mar = c(5,5,0,1) + 0.1)

plot(logodds~mymatrix2[1,])
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20 30 40 a0 60 70 80

mymatrix2[1, ]

After the transformation, the relationship should be more linear, and | don’t have any problem
with the response going off to plus or minus infinity.

So the logistic regression model is:
expected log(m/(1 — 1)) = By + P1x

We can fit a logistic regression model in R using glm (generalized linear model) rather than Im.
WhickhamData = read_delim("http://www.rossmanchance.com/stat414/data/WhickhamData.t
thl, ll\t ll)

WhickhamData$smoking.status = factor(WhickhamData$smoking.status)

Notice this data file is in “count /frequency format” or “grouped” (already have the counts for
each possible explanatory variable combination), so we can think of each row as a binomial
random variable where we have the observed number of successes and the sample size for
that binomial random variable.
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#when the data is in this grouped format, tell R the counts for successes and failu
res

WhickhamData$failures = WhickhamData$interviewed-WhickhamData$alive

#I want to treat age as quantitative in this model

agecats = c("18-24", "25-34", "35-44", "45-54", "55-64", "65-74", "75+")

agevalues = c(21, 29, 39, 49, 59, 69, 79)

ageQ = as.numeric(agevalues[match(WhickhamData$age, agecats)])

modell = glm(cbind(alive, failures)~ ageQ, family=binomial("logit"), data = Whickha
mData)
summary (modell)

Call:
glm(formula = cbind(alive, failures) ~ ageQ, family = binomial("logit"),
data = WhickhambData)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 7.37934 0.40126 18.4 <2e-16 ***
ageQ -0.12277 0.00698 -17.6 <2e-16 **x*

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.496 on 13 degrees of freedom
Residual deviance: 35.654 on 12 degrees of freedom
AIC: 86.65

Number of Fisher Scoring iterations: 5

#Examine the model

par(mar = c(5,5,0,1) + 0.1)

agelo0=seq(0:100)

#predicted probability is odds/(1+odds)

predprob = exp(7.38 - .1228*agel00)/(l+exp(7.38 - .1228*agell0))
plot(predprob~agel@0, type="1")

points(x=mymatrix2[1,], y=props[1,])
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So the fitted model is
predicted log odds of alive = 7.38 — 0.123age

Clearly age is statistically significant (z = —17.58) and with a negative coefficient, which seems
to imply the probability of being alive 20 years later is smaller for individuals who were older at
the time of the first interview.

(e) To interpret the intercept, what are the predicted log odds of being alive at age =0?
What are the predicted odds of being alive at age = 0?

predicted log odds of alive for age = 0 at time first interview = 7.38; predicted odds of alive for age =0
at time first interview = exp(7.38) = 1603.59

Again, most people don’t have good intuition for odds, so you can convert the intercept back to
a probability by using the relationship probability = odds/(1 + odds)

(f) What is the predicted probability of someone who was a newborn in Whickham UK at
the start of the studying being alive 20 years later?

predicted probability of alive for age = 0: (1603.59)/(1 + 1603.59) = 0.9994

To interpret the slope, we start off as usual with “a one-unit increase in x...” If you do the
algebra, this corresponds to an exp(ﬁ) predicted multiplicative increase in the response.

(g) Estimate the decrease in the odds of survival with each additional year of age. What
about a 10 year age difference?
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exp(-.12277) = 0.884; predicted the odds of survival are 0.884 times smaller with each additional year
at time of first interval;
.884710 =.291

Now let’s go back to the smoking variable

model2 = glm(cbind(alive, failures)~ smoking.status, family=binomial("logit"), data
= WhickhamData)
summary (model2)

Call:
glm(formula = cbind(alive, failures) ~ smoking.status, family = binomial("logit"),
data = WhickhamData)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.7805 0.0796 9.80 <2e-16 ***
smoking.statussmoker ©.3786 0.1257 3.01 0.0026 **
Signif. codes: © '***' 9,001 '**' @.01 '*' ©0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.5 on 13 degrees of freedom
Residual deviance: 632.3 on 12 degrees of freedom
AIC: 683.3

Number of Fisher Scoring iterations: 4
contrasts(WhickhamData$smoking.status)

smoker
nonsmoker 0
smoker 1

Smoking.status is a categorical variable, remember that R creates a 0/1 variable in the model.

(h) Provide an interpretation of the slope coefficient in this model. How does it compare
to the odds ratio we computed by hand above?

odds of survival are exp(.37858) = 1.46 times higher for smokers compared to non-smokers (should
match the odds ratio from the original 2x2 table)

You saw above that age is related to the response and it turns out the real question is whether
there is an association between smoking status and survival status after adjusting for age.

model3 = glm(cbind(alive, failures)~ ageQ + smoking.status, family=binomial("logit"
), data = WhickhamData)
summary (model3)

Call:
glm(formula = cbind(alive, failures) ~ ageQ + smoking.status,
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family = binomial("logit"), data = WhickhamData)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.64563 0.44491 17.18 <2e-16 **x*
ageQ -0.12537 0.00729 -17.21 <2e-16 ***
smoking.statussmoker -0.26507 0.16871 -1.57 0.12
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.496 on 13 degrees of freedom
Residual deviance: 33.163 on 11 degrees of freedom
AIC: 86.16

Number of Fisher Scoring iterations: 5

(i) What do you learn about the association between smoking.status and probability of
being alive, after adjusting for age? Interpret as if to a non-statistician.
odds of survival for smoker is exp(-.2651) = 0.767 times smaller than a nonsmoker of the same age.

To see why this is happening, we can explore the relationship between age and smoking
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(j) Explain what you learn and how this relates to the above analyses.

There is an association between whether or not someone was a smoker and age. SMokers tended to
be a little younger and so when comparing to smokers to nonsmokers were also comparing younger
individuals, who are more likely to survive, to older. Not too many above age 65 but they tended to be
nonsmokers, ‘pulling down’ the likelihood of survival for the nonsmokers.

Summary

Logistic Regression allows us to model the log odds of success for a categorical response
variable based on any number of quantitative or categorical predictor variables. In general, if x;

is increased by one unit (gll other variables fixed), the odds of success, that is the odds that
Y = 1, are multiplied by e”i. (And the estimated increase in the odds associated with a change
of d units is exp(d x f;).)
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With a binary predictor, exp(p) is the ratio of the population odds when x = 1 to the odds for
x = 0, more directly the odds ratio between these two groups.

Notes:

. The conclusions are the same no matter which outcome is labeled as success vs. failure.
* Arandom intercepts logistic regression model will look like:

In (nj/(l - nj)) = Bo + Ug;
where

ug; ~ N(0,7§)



