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Stat 414 - Day 13 
Random Slopes/Logistic Regression 

Last Time: Multiple random slopes 

• Adding random slopes induces unequal diagonal values and non-identical off-diagonal in 
the variance-covariance matrix of the 𝑦𝑖𝑗 (marginal) vs. conditional 𝜖𝑖𝑗 

• 𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝜏0
2 + 2𝜏01𝑥𝑖𝑗 + 𝜏1

2𝑥𝑖𝑗
2 + 𝜎2 

• Variance of response is quadratic function of explanatory variable 
• Impacted by choice of scaling (origin) of 𝑥 variable 

• Smallest when 𝑥 = −𝜏01/𝜏1
2 (correlation vs. covariance) 

• Cov of two individuals in the same group: 𝜏0
2 + 𝜏01(𝑥𝑖𝑗 + 𝑥𝑘𝑗) + 𝜏1

2(𝑥𝑖𝑗𝑥𝑘𝑗) 

• Covariance between two observations (in same level 2 group) depends on the 
corresponding 𝑥-values 

• No simple ICC (depends on 𝑥) 
• Simplest: use 𝑥 = 0 

• 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗 , 𝑌𝑘𝑗) = 𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑘𝑗)/𝑆𝐷(𝑌𝑖𝑗)𝑆𝐷(𝑌𝑘𝑗) 

• Each random slope adds a slope variance parameter, plus covariances with intercepts 
(e.g., 𝜏01) and any other random slopes. 

• Try to minimize use of random slopes or model gets very complicated very quickly 
• Can zero out covariances to simplify model but makes sense in context? 
• Centering variables can sometimes help with convergence 

Example 1: A bit more on PISA data 

Let’s try to understand the correlations of random effects a bit more. Reconsider the PISA data 
predicting (standardized) reading scores. 
ReadingScores = read.table("https://www.rossmanchance.com/stat414/data/ReadingScore
s.txt", header=T) 
ReadingScores2 <- ReadingScores |> 
  filter(!(schoolid %in% c(139, 350))) 
ReadingScores2$schoolid <- factor(ReadingScores2$schoolid) 
 
model4 = lmer(z_read ~ cen_pos + cen_escs + female  
              + (1 + cen_escs + female| schoolid),  
              data = ReadingScores2, REML = F) 
summary(model4, corr = FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: z_read ~ cen_pos + cen_escs + female + (1 + cen_escs + female |   
    schoolid) 
   Data: ReadingScores2 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    34069     34151    -17023     34047     13548  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.290 -0.642  0.059  0.692  3.113  
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Random effects: 
 Groups   Name        Variance Std.Dev. Corr        
 schoolid (Intercept) 0.1872   0.433                
          cen_escs    0.0178   0.134    -0.41       
          female      0.0222   0.149    -0.49 -0.26 
 Residual             0.6707   0.819                
Number of obs: 13559, groups:  schoolid, 354 
 
Fixed effects: 
             Estimate Std. Error t value 
(Intercept) -0.215844   0.025688   -8.40 
cen_pos      0.002245   0.000792    2.83 
cen_escs     0.314805   0.018966   16.60 
female       0.402269   0.017990   22.36 
head(ranef(model4)[[1]]) 
  (Intercept)  cen_escs   female 
1     -0.1077 -0.022585  0.06483 
2     -0.1989  0.029782 -0.02883 
3      1.3355 -0.206826 -0.19889 
4      0.7491 -0.103881 -0.07902 
5      0.3300  0.009428 -0.08622 
6      0.2113  0.061889 -0.08942 
par(mfrow=c(1,3)) 
plot(ranef(model4)$schoolid[,"(Intercept)"]~ ranef(model4)[[1]]$cen_escs) 
plot(ranef(model4)[[1]][,1]~ ranef(model4)[[1]]$female) 
plot(ranef(model4)[[1]]$female~ ranef(model4)[[1]]$cen_escs) 
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par(mfrow=c(1,1)) 

(a) How do we interpret each covariance? 
-0.41: covariance between intercepts (z_read for males with average escs, average pos) and escs 
slopes: schools with higher performance for average males tend to have smaller effect of escs. -0.49: 
schools with higher performance for average males tend to have smaller gender gaps. Schools with 
larger escs effects tend to have smaller gender gaps. 

It’s a little crowded to graph every single line, so let’s see if we can see the pattern from just a 
few. 

library(ggeffects) 
library(patchwork) 
p1 <- plot(ggpredict(model4,  
              terms=c("cen_escs", "schoolid [sample = 9]"),  
              type = "random"), show_ci = FALSE) 
 
p2 <- plot(ggpredict(model4,  
              terms=c("female", "schoolid [sample = 9]"),  
              type = "random"), show_ci = FALSE) 
p1 + p2  
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plot(ggpredict(model4, 
  terms = c("female [-2:2 by=0.1]", "schoolid [sample=9]"), 
  type  = "random" 
), show_ci=FALSE) 
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(b) Do the plots confirm the interpretations in (a)? What if you rerun the plot? Why is the 
last plot helpful? 

Compare the intercepts (x=0) and slopes of 9 schools, the last one was helpful to expand the x-scale to 
better see the pattern in the visual. Rerunning the R command will randomly select 9 different schools 

(c) Do any of these school reflect the last covariance? 

ReadingScores2 |>  
  dplyr::filter(schoolid %in% c(312, 181, 197, 23, 230, 117)) |> 
  ggplot(aes(x = cen_escs, y = z_read, color = factor(female))) + 
    geom_point(alpha = 0.4) +                 
    geom_smooth(method = "lm", se = FALSE) + # separate lines for M/F 
   geom_smooth(method = "lm", se = FALSE, color = "black") + # overall line 
    facet_wrap(~ schoolid, ncol = 3) + 
    labs(x = "Centered ESCS",  
         y = "Reading z-score",  
         color = "Sex") + 
    theme_bw() 

 
In school 23 we see a larger gender gap and a smaller slope of escs. In school 230 we see a smaller 
gender gap and a larger effect of escs. 

What if I didn’t want to model the random slopes as correlated? 

(d) Is there anything beneficial/wrong with the following? 
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model5 = lmer(z_read ~ cen_pos + cen_escs + female 
+ (1 + cen_escs | schoolid) + (1 + female| schoolid),
data = ReadingScores2, REML = F)

summary(model5, corr = FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: z_read ~ cen_pos + cen_escs + female + (1 + cen_escs | schoolid) + 

 (1 + female | schoolid) 
 Data: ReadingScores2 

 AIC  BIC  logLik -2*log(L)  df.resid 
 34070  34153 -17024  34048  13548 

Scaled residuals: 
 Min  1Q Median  3Q  Max 

-4.354 -0.641  0.061  0.691  3.121

Random effects: 
 Groups  Name  Variance Std.Dev. Corr 
 schoolid  (Intercept) 0.0687  0.262 

 cen_escs  0.0177  0.133 -0.78
 schoolid.1 (Intercept) 0.1236  0.352 

 female  0.0226  0.150 -0.66
 Residual  0.6707  0.819 
Number of obs: 13559, groups:  schoolid, 354 

Fixed effects: 
 Estimate Std. Error t value 

(Intercept) -0.215023  0.025980 -8.28
cen_pos  0.002258  0.000792 2.85
cen_escs  0.314284  0.018963  16.57 
female  0.401875  0.018035  22.28 
optimizer (nloptwrap) convergence code: 0 (OK) 
Model failed to converge with max|grad| = 0.0426803 (tol = 0.002, component 1) 

You can force some of the covariances to be zero, but worth it? Is a little awkward here to have two 
sets of random intercepts. Another option is: 

  Code 
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model6 = lmer(z_read ~ cen_pos + cen_escs + female  
              + (1 | schoolid) + (-1 + cen_escs | schoolid)  
              + (-1 + female| schoolid),  
              data = ReadingScores2, REML = F) 
summary(model6, corr = FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: z_read ~ cen_pos + cen_escs + female + (1 | schoolid) + (-1 +   
    cen_escs | schoolid) + (-1 + female | schoolid) 
   Data: ReadingScores2 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    34101     34161    -17042     34085     13551  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.374 -0.642  0.059  0.696  3.113  
 
Random effects: 
 Groups     Name        Variance Std.Dev. 
 schoolid   (Intercept) 0.1653   0.407    
 schoolid.1 cen_escs    0.0168   0.130    
 schoolid.2 female      0.0127   0.113    
 Residual               0.6722   0.820    
Number of obs: 13559, groups:  schoolid, 354 
 
Fixed effects: 
             Estimate Std. Error t value 
(Intercept) -0.225476   0.024392   -9.24 
cen_pos      0.002096   0.000793    2.64 
cen_escs     0.316631   0.018934   16.72 
female       0.406249   0.017185   23.64 

Example 2: Hedonism 

A survey conducted by the 2002 European Social Surveys (ESS) measured an individual’s 
level of hedonism (pleasure for oneself, high scores indicate more hedonistic beliefs (e.g., 
“doing things you enjoy is important”)). We have data from a “random sample” of 20 countries 
in the European Union. Variables include respondent’s age (centered), respondent’s self-
reported gender (measured as male or female), respondent’s monthly income, respondent’s 
education, and the average education level in the country. 
library(haven) 
hedonism <- read_dta("http://www.rossmanchance.com/stat414/data/hedonism.dta") 
head(hedonism) 
# A tibble: 6 × 10 
  country     individual hedonism  cons   age female  educ income countrycode 
  <dbl+lbl>        <dbl>    <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl+lbl>   
1 1 [Austria]          2   0.762      1    49      0    14      2 1 [AUT]     
2 1 [Austria]          4  -1.67       1    43      0    18      9 1 [AUT]     
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3 1 [Austria]          5   1.14       1    40      1    15      9 1 [AUT]     
4 1 [Austria]          6   1.5        1    62      1    11      5 1 [AUT]     
5 1 [Austria]          8  -0.0480     1    40      1    17      9 1 [AUT]     
6 1 [Austria]          9   1.07       1    46      0    16      8 1 [AUT]     
# ℹ 1 more variable: southern <dbl> 
hist(hedonism$hedonism) 

 
model1 <- lmer(hedonism ~ 1 + age + (1 + age | country), data = hedonism) 
summary(model1) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: hedonism ~ 1 + age + (1 + age | country) 
   Data: hedonism 
 
REML criterion at convergence: 76612 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.137 -0.651  0.052  0.684  4.883  
 
Random effects: 
 Groups   Name        Variance  Std.Dev. Corr  
 country  (Intercept) 0.0891304 0.29855        
          age         0.0000201 0.00448  -0.05 
 Residual             0.7871491 0.88721        
Number of obs: 29419, groups:  country, 20 
 
Fixed effects: 
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            Estimate Std. Error t value 
(Intercept)  0.60224    0.06848    8.79 
age         -0.01759    0.00105  -16.80 
 
Correlation of Fixed Effects: 
    (Intr) 
age -0.104 
optimizer (nloptwrap) convergence code: 0 (OK) 
Model failed to converge with max|grad| = 3.29975 (tol = 0.002, component 1) 
Model is nearly unidentifiable: very large eigenvalue 
 - Rescale variables? 
hedonism$age.c <- hedonism$age - mean(hedonism$age) 
model1 <- lmer(hedonism ~ 1 + age.c + (1 + age.c | country), data = hedonism) 
summary(model1) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: hedonism ~ 1 + age.c + (1 + age.c | country) 
   Data: hedonism 
 
REML criterion at convergence: 76610 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.135 -0.651  0.052  0.683  4.886  
 
Random effects: 
 Groups   Name        Variance  Std.Dev. Corr 
 country  (Intercept) 0.1011797 0.31809       
          age.c       0.0000208 0.00457  0.69 
 Residual             0.7873193 0.88731       
Number of obs: 29419, groups:  country, 20 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept) -0.22050    0.07133   -3.09 
age.c       -0.01758    0.00106  -16.51 
 
Correlation of Fixed Effects: 
      (Intr) 
age.c 0.661  
optimizer (nloptwrap) convergence code: 0 (OK) 
Model failed to converge with max|grad| = 0.205545 (tol = 0.002, component 1) 
Model is nearly unidentifiable: very large eigenvalue 
 - Rescale variables? 
plot(ggpredict(model1, terms=c("age.c", "country [sample = 9]"),  
               type = "random"), show_ci = FALSE) 
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(a) How would you interpret the slope coefficient of age and 𝜏0
2 in this model? 

estimated slope of the average country line (don’t forget the average country line part). Country level 
variance in mean hedonism at age 46.8 (age variable has been centered) 

(b) Identify and interpret the ‘slope-intercept correlation’. 

Note: Overall hedonism decreases with age, more so in some countries than others. Slope intercept 
correlation is positive: countries with higher hedonism scores for average-aged individuals tend to 
have a smaller decrease in hedonism with age. 

Cool visual 
hedonism <- hedonism %>% 
  mutate( 
    country_code = as_factor(countrycode)               
  ) 
model1 <- lmer(hedonism ~ 1 + age.c + (1 + age.c | country_code),  
               data = hedonism) 
re <- ranef(model1)$country_code |> 
  tibble::rownames_to_column("country_code") 
 
intercepts  = re[,"(Intercept)"] + fixef(model1)[1] 
slopes = re[,"age.c"] + fixef(model1)[2] 
 
ggplot(re, aes(y = slopes, x = intercepts, label = country_code)) + 
  geom_point() + 
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 geom_text(vjust = -0.5) + 
  labs(y = "Random slopes", 

 x = "Random intercepts") + 
  geom_hline(yintercept = -.0176) + 
  geom_vline(xintercept = -.2205) + 
  theme_bw() 

(c) Describe the code to a non-statistics/non-R guru

Extracting out the random effects and attaching the country code labels to them. Converted the 
random effects into the random slopes and random intercepts. The graph helps us see which countries 
have above/below average intercepts and/or slopes. (The average intercept and average slope is 
represented by the values of the fixed effects.) 

(d) What can you tell me about countries like Australia (AUT) and Portugal (PRT)? What
can you tell me about countries like Hungary (HUN), the Netherlands (NLD) and
Switzerland (CHE)? What about Poland?

AUT and PRT have average hedonism score for the average-aged and average rate of decrease with 
age. HUN, NLD, CHE have above average intercept (avg hedonism score for average-aged) and above 
average (meaning less negative) ‘effect’ of age. Poland has below average hedonim score and more 
drammtric decrease with age (starts low and decreases more quickly with age). 

  Code 
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hedonism2 <- hedonism |> 
  mutate( 
    hedonism = as.numeric(hedonism), 
    age.c = as.numeric(age.c), 
    country_code = as_factor(countrycode) 
  ) |> 
    dplyr::filter(country_code %in% c("AUT", "PRT", "HUN", "NLD", "CHE", "POL")) 
 
  ggplot(hedonism2, aes(x = age.c, y = hedonism)) + 
    geom_smooth(method = "lm", se = FALSE) + # separate lines  
    facet_wrap(~ country_code, ncol = 3) + 
    labs(x = "Centered Age",  
         y = "Hedonism Score") + 
    theme_bw() 

 

Introduction to Logistic Regression 

Example 1: Whickham data 

Between 1972-1974 a survey was taken in the Whickham district of the United Kingdom 
(Appleton et al., 1996; Simonoff, 2003), including information such as smoking status and age. 
Twenty years later, a follow-up study was conducted, and it was determined whether the 
interviewee was still alive. First consider the smokers and non-smokers: 
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mymatrix = matrix(c(443, 139, 502, 230), ncol=2, dimnames = list(c("alive", "died")
, c("smokers", "non-smokers"))) 
mymatrix 
      smokers non-smokers 
alive     443         502 
died      139         230 

(a) What is the response variable? Quantitative or categorical? 
whether or not alive = categorical 

There are several statistics we could use to compare the likelihood of being alive between the 
smokers and non-smokers, including 

• difference in conditional proportions (443/(443+139) - (502)/(502+230)) 
• relative risk = ratio of conditional proportions (443/(443+139) / (502)/(502+230)) 
• odds ratio = ratio of odds of success (443/139) / (502/203) where odds is the proportion 

of successes divided by the proportion of failures, (443/582)/(139/582) / 
(502/705)/(230/705) 

The difference in conditional proportions has some limitations, namely if the success 
probability is small, you will be working with small numbers and so it is difficult to look at the 
difference and say “that’s large” or not. The relative risk helps you see whether one value is 
large compared to the other value, but it is problematic to use with “case-control studies” (I find 
some successes and I find some failures, so I can’t turn around and use the data to estimate 
the probability of success.) Odds ratio doesn’t have either of these issues, but is more difficult 
to interpret. 

(b) Compute and interpret the odds ratio of being alive for smokers (numerator) 
compared to non-smokers (denominator). Also report the percentage change (subtract 
1 and multiply by 100 percent and report as a decrease). 

FOUND THE TYPO: the 203 in the OR formula above needed to be 230. (And sample size is 732) odds 
ratio = (443/139) / (502/230) 1.46 so smokers had 1.46 times higher odds of survival than non-
smokers. 1.46 - 1 = .46 x 100% => smokers had 46% higher odds of survival than non-smokers 

You should be more bothered by these data suggesting that smoking is beneficial for your 
health! So we want to “adjust” for possible confounding variables. 

Consider the following data: 

mymatrix2 = matrix(c(21, 114, 117-114, 29, 273, 281-273, 39, 209, 230-209, 49, 169, 
208-169, 59, 145, 236-145, 69, 35, 165-35, 79, 0,77-0), nrow=3, dimnames = list(c("
midage", "alive", "died"), c("under 25", "25-35", "35-45", "45-55", "55-65", "65-75
", "over 75"))) 
mymatrix2 
       under 25 25-35 35-45 45-55 55-65 65-75 over 75 
midage       21    29    39    49    59    69      79 
alive       114   273   209   169   145    35       0 
died          3     8    21    39    91   130      77 
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Does probability of being alive appear to depend on the age at the first interview? Let’s 
explore: 
props = prop.table(mymatrix2[2:3,], margin=2) 
par(mar = c(5,5,0,1) + 0.1) #the excess white space around the graphs is really sta
rting to annoy me 
plot(props[1,]~mymatrix2[1,]) 

 

(c) Does there appear to be evidence that those who were older when they were first 
interviewed were less likely to be alive at the follow-up interview? How would you 
suggest modelling these data? Give some downsides to using a linear model in this 
case. 

Yes! linear model does likely work because this relationship is not linear and have to worry about 
bounds on probabilities of 0 and 1. 

Of course, when we have a relationship we want to fit a line, but that’s not appropriate here 
(and generally not for proportions as the response) for two main reasons: 

• We can’t extend the line much further without predicting probabilities below 0 or above 1 
• The relationship is usually not linear. 

To solve the second issue, we want to transform the data or use a polynomial model. But 
remember the transformations we saw before were for “monotonic” relationships. With 
proportions, we tend to see more of an “S-shaped” curve where the “response” values 
approach zero in one direction and approach one in the other direction. So we will use a 
different kind of transformation. 
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Definition 

The logit transformation is 𝑙𝑛(𝜋/(1 − 𝜋)) which is equivalent to the log odds of success. 

 
#We have to do something about the zero.  I'm just going to put in 1 there for now. 
props[,7] = c(.193, .987) 
logodds= log(props[1,]/props[2,]) 
par(mar = c(5,5,0,1) + 0.1) 
plot(logodds~mymatrix2[1,]) 

 

After the transformation, the relationship should be more linear, and I don’t have any problem 
with the response going off to plus or minus infinity. 

So the logistic regression model is: 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑔(𝜋/(1 − 𝜋)) = 𝛽0 + 𝛽1𝑥 

We can fit a logistic regression model in R using glm (generalized linear model) rather than lm. 
WhickhamData = read_delim("http://www.rossmanchance.com/stat414/data/WhickhamData.t
xt", "\t") 
WhickhamData$smoking.status = factor(WhickhamData$smoking.status) 

Notice this data file is in “count /frequency format” or “grouped” (already have the counts for 
each possible explanatory variable combination), so we can think of each row as a binomial 
random variable where we have the observed number of successes and the sample size for 
that binomial random variable. 



Fall, 2025  Wednesday, Nov. 5 

#when the data is in this grouped format, tell R the counts for successes and failu
res 
WhickhamData$failures = WhickhamData$interviewed-WhickhamData$alive 
#I want to treat age as quantitative in this model 
agecats = c("18-24", "25-34", "35-44", "45-54", "55-64", "65-74", "75+") 
agevalues = c(21, 29, 39, 49, 59, 69, 79) 
ageQ = as.numeric(agevalues[match(WhickhamData$age, agecats)]) 
 
model1 = glm(cbind(alive, failures)~ ageQ, family=binomial("logit"), data = Whickha
mData) 
summary(model1) 
 
Call: 
glm(formula = cbind(alive, failures) ~ ageQ, family = binomial("logit"),  
    data = WhickhamData) 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  7.37934    0.40126    18.4   <2e-16 *** 
ageQ        -0.12277    0.00698   -17.6   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 641.496  on 13  degrees of freedom 
Residual deviance:  35.654  on 12  degrees of freedom 
AIC: 86.65 
 
Number of Fisher Scoring iterations: 5 
#Examine the model 
par(mar = c(5,5,0,1) + 0.1) 
age100=seq(0:100) 
#predicted probability is odds/(1+odds) 
predprob = exp(7.38 - .1228*age100)/(1+exp(7.38 - .1228*age100)) 
plot(predprob~age100, type="l") 
points(x=mymatrix2[1,], y=props[1,]) 



Fall, 2025  Wednesday, Nov. 5 

 

So the fitted model is 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑜𝑔 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑎𝑙𝑖𝑣𝑒 = 7.38 − 0.123𝑎𝑔𝑒 

Clearly age is statistically significant (𝑧 = −17.58) and with a negative coefficient, which seems 
to imply the probability of being alive 20 years later is smaller for individuals who were older at 
the time of the first interview. 

(e) To interpret the intercept, what are the predicted log odds of being alive at age = 0? 
What are the predicted odds of being alive at age = 0? 

predicted log odds of alive for age = 0 at time first interview = 7.38; predicted odds of alive for age = 0 
at time first interview = exp(7.38) = 1603.59 

Again, most people don’t have good intuition for odds, so you can convert the intercept back to 
a probability by using the relationship 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑜𝑑𝑑𝑠/(1 + 𝑜𝑑𝑑𝑠) 

(f) What is the predicted probability of someone who was a newborn in Whickham UK at 
the start of the studying being alive 20 years later? 

predicted probability of alive for age = 0: (1603.59)/(1 + 1603.59) = 0.9994 

To interpret the slope, we start off as usual with “a one-unit increase in x…” If you do the 

algebra, this corresponds to an 𝑒𝑥𝑝(𝛽̂) predicted multiplicative increase in the response. 

(g) Estimate the decrease in the odds of survival with each additional year of age. What 
about a 10 year age difference? 
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exp(-.12277) = 0.884; predicted the odds of survival are 0.884 times smaller with each additional year 
at time of first interval; 
.884^10 = .291 

Now let’s go back to the smoking variable 

model2 = glm(cbind(alive, failures)~ smoking.status, family=binomial("logit"), data 
= WhickhamData) 
summary(model2) 
 
Call: 
glm(formula = cbind(alive, failures) ~ smoking.status, family = binomial("logit"),  
    data = WhickhamData) 
 
Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)     
(Intercept)            0.7805     0.0796    9.80   <2e-16 *** 
smoking.statussmoker   0.3786     0.1257    3.01   0.0026 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 641.5  on 13  degrees of freedom 
Residual deviance: 632.3  on 12  degrees of freedom 
AIC: 683.3 
 
Number of Fisher Scoring iterations: 4 
contrasts(WhickhamData$smoking.status) 
          smoker 
nonsmoker      0 
smoker         1 

Smoking.status is a categorical variable, remember that R creates a 0/1 variable in the model. 

(h) Provide an interpretation of the slope coefficient in this model. How does it compare 
to the odds ratio we computed by hand above? 

odds of survival are exp(.37858) = 1.46 times higher for smokers compared to non-smokers (should 
match the odds ratio from the original 2x2 table) 

You saw above that age is related to the response and it turns out the real question is whether 
there is an association between smoking status and survival status after adjusting for age. 

model3 = glm(cbind(alive, failures)~ ageQ + smoking.status, family=binomial("logit"
), data = WhickhamData) 
summary(model3) 
 
Call: 
glm(formula = cbind(alive, failures) ~ ageQ + smoking.status,  
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    family = binomial("logit"), data = WhickhamData) 
 
Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)     
(Intercept)           7.64563    0.44491   17.18   <2e-16 *** 
ageQ                 -0.12537    0.00729  -17.21   <2e-16 *** 
smoking.statussmoker -0.26507    0.16871   -1.57     0.12     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 641.496  on 13  degrees of freedom 
Residual deviance:  33.163  on 11  degrees of freedom 
AIC: 86.16 
 
Number of Fisher Scoring iterations: 5 

(i) What do you learn about the association between smoking.status and probability of 
being alive, after adjusting for age? Interpret as if to a non-statistician. 
odds of survival for smoker is exp(-.2651) = 0.767 times smaller than a nonsmoker of the same age. 

To see why this is happening, we can explore the relationship between age and smoking 

   

(j) Explain what you learn and how this relates to the above analyses. 

There is an association between whether or not someone was a smoker and age. SMokers tended to 
be a little younger and so when comparing to smokers to nonsmokers were also comparing younger 
individuals, who are more likely to survive, to older. Not too many above age 65 but they tended to be 
nonsmokers, ‘pulling down’ the likelihood of survival for the nonsmokers. 

Summary 

Logistic Regression allows us to model the log odds of success for a categorical response 
variable based on any number of quantitative or categorical predictor variables. In general, if 𝑥𝑗 

is increased by one unit (all other variables fixed), the odds of success, that is the odds that 

𝑌 = 1, are multiplied by 𝑒𝛽̂𝑗. (And the estimated increase in the odds associated with a change 

of 𝑑 units is 𝑒𝑥𝑝(𝑑 × 𝛽̂𝑗).) 
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With a binary predictor, 𝑒𝑥𝑝(𝛽) is the ratio of the population odds when 𝑥 = 1 to the odds for 
𝑥 = 0, more directly the odds ratio between these two groups. 

Notes: 
• The conclusions are the same no matter which outcome is labeled as success vs. failure. 
• A random intercepts logistic regression model will look like: 

𝑙𝑛 (𝜋𝑗/(1 − 𝜋𝑗)) = 𝛽0 + 𝑢0𝑗 

  where 

𝑢0𝑗 ∼ 𝑁(0, 𝜏0
2) 


