Fall, 2025 Monday, Nov. 3

Stat 414 - Day 12
Random Slopes (4.6, 5.2)

Last Time

* Interaction terms change slopes

* Interpret “main effects” by “zeroing out” the interaction term.

«  Otherwise, coefficient of x; = f; + Bszx,

+  With interactions (and polynomial terms), centering quantitative variables can reduce
multicollinearity

- We fit a “random coefficient model” y;; = By; + B1x1;j + €;j Where By; = Boo + ug; With
up; ~ N(0,7§) and By; = B1o + uy; With uy; ~ N(0,77)

«  So (assuming) B;; are normally distributed around p;,

«  This adds a variance component for the slopes (z?) as well as a covariance between the
random slopes and random intercepts (7,;)

Example 1: Beaches cont.

Richness varies by Beach, so including Beach in the model (as fixed or random effects) should

give us more accurate standard errors.
library(1lme4)
library(tidyverse)

rikzdata <- read.table("http://www.rossmanchance.com/stat414/data/RIKZ.txt", header
=TRUE)

rikzdata$Beach = factor(rikzdata$Beach)

model® = 1lmer(Richness ~ 1 + (1 | Beach), data = rikzdata)

(a) Calculate and interpret the ICC value

(i) Code

performance::icc(model®)
# Intraclass Correlation Coefficient

Adjusted ICC: 0.403
Unadjusted ICC: 0.403

The expected correlation of two observations in the same beach is 0.403/About 40% of the variation in
Richness values is between beaches.

Fit the random intercepts model with NAP

summary(modell <- lmer(Richness ~ NAP + (1 | Beach), data = rikzdata), corr=F)
Linear mixed model fit by REML ['lmerMod']
Formula: Richness ~ NAP + (1 | Beach)

Data: rikzdata

REML criterion at convergence: 239.5
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Scaled residuals:
Min 1Q Median 3Q Max
-1.423 -0.485 -0.158 ©0.252 3.979

Random effects:

Groups  Name Variance Std.Dev.
Beach (Intercept) 8.67 2.94
Residual 9.36 3.06

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.582 1.096 6.01
NAP -2.568 0.495 -5.19
#Library(tidyverse)

preds = predict(modell, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) +
geom_smooth(method = "1lm", alpha = .5, se = FALSE) +
geom_abline(intercept = 6.58, slope = -2.83) +

geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) +
theme_bw()
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#performance: :check_model (model1)

(b) Do the regression model assumptions appear to be met?

We also see evidence of unequal variance.

Monday, Nov. 3

But we see some patterns (including related to the beaches) in the residuals and this tells us

that we might be able to improve the fit between the model and the data.

Random Slopes

So then we tried a random slopes model (like an interaction between NAP and Beach), and the

variation in the slopes (£2) was statistically significant.

model2 = 1lmer(Richness ~ NAP + (1 + NAP | Beach), data

summary(model2, corr=FALSE)

Linear mixed model fit by maximum likelihood ['lmerMod"']

Formula: Richness ~ NAP + (1 + NAP | Beach)
Data: rikzdata

AIC BIC loglLik -2*log(L) df.resid
246.7 257.5 -117.3 234.7 39

Scaled residuals:
Min 1Q Median 3Q Max
-1.798 -0.342 -0.183 ©0.175 3.139

Random effects:

Groups  Name Variance Std.Dev. Corr

rikzdata, REML = FALSE)
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Beach (Intercept) 10.95 3.31
NAP 2.50 1.58 -1.00

Residual 7.17 2.68

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.582 1.188 5.54
NAP -2.829 0.685 -4.13
optimizer (nloptwrap) convergence code: @ (OK)
boundary (singular) fit: see help('isSingular')
ranef(model2)
$Beach

(Intercept) NAP
1.7986 -0.8598
5.6926 -2.7212
-2.7427 1.3111
-2.9682 1.4189
.5045 -2.1532
-2.1372 .0216
-2.4399 .1663
-1.4646 .7001
-0.2431 .1162
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with conditional variances for "Beach"
anova(modell, model2)
Data: rikzdata
Models:
modell: Richness ~ NAP + (1 | Beach)
model2: Richness ~ NAP + (1 + NAP | Beach)
npar AIC BIC loglLik -2*log(L) Chisq Df Pr(>Chisq)

modell 4 250 257 -121 242
model2 6 247 258 -117 235 7.17 2 0.028 *
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

preds = predict(model2, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) +
geom_smooth(method = "1m", formula = y ~ x, alpha = .5, se = FALSE) +
geom_abline(intercept = 6.58, slope = -2.83) +
geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) +
theme_bw()
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ggplot(rikzdata, aes(x = NAP, y = Richness)) +
geom_point() +
geom_smooth(method="1m", formula= y ~ x, se=FALSE) +
geom_line(aes(y= preds), color = "red") +
facet_wrap(~Beach) +
theme_bw()
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Alternatively

One recommended approach for model selection is to start with all potential fixed effects
(including interactions), and then decide on the random effects (e.g., slopes and/or intercepts).
Then use that model to pare down the fixed effects.

Fit the random intercepts model including NAP and Exposure.

rikzdata$ExposureCat = (rikzdata$Exposure > 10)
model3 = lmer(Richness ~ NAP + ExposureCat + (1 | Beach), data = rikzdata, REML=
FALSE)
summary(model3, corr=F)
Linear mixed model fit by maximum likelihood ['lmerMod"']
Formula: Richness ~ NAP + ExposureCat + (1 | Beach)
Data: rikzdata

AIC BIC loglLik -2*log(L) df.resid
244.8 253.8 -117.4 234.8 40

Scaled residuals:
Min 1Q Median 3Q Max
-1.517 -0.467 -0.085 ©0.218 3.932

Random effects:
Groups  Name Variance Std.Dev.
Beach (Intercept) 2.42 1.56
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Residual 9.12 3.02
Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.608 0.932 9.24
NAP -2.604 0.479 -5.44
ExposureCatTRUE -4.530 1.383 -3.28

anova(modell, model3)
Data: rikzdata
Models:
modell: Richness ~ NAP + (1 | Beach)
model3: Richness ~ NAP + ExposureCat + (1 | Beach)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

modell 4 250 257 -121 242
model3 5 245 254 -117 235 7.07 1 0.0078 **
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

#0ur predicted model

preds = predict(model3, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat )) +

geom_smooth(method = "1m", formula = y ~ x, alpha = .5, se = FALSE) +

geom_abline(intercept = 8.1923-3.3238, slope = -2.85) +

geom_abline(intercept = 8.1923, slope = -2.85) +

geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) +
theme_bw()

ExposureCat

FALSE
—= TRUE
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(n) Is the Exposure variable significant? Do you see a substantial improvement in the fit
of the model compared to Model 1? How do the variance components change/what has
been the main impact?

The ExposureCat variable is significant (The LRT test comparing model 1 and model 3 gives a p-value =
.0078). The AIC reduces by about 5 (which is decent). The unexplained variation in the intercepts
reduced from 8.668 to 2.419.

Cross-level Interaction

We saw that Exposure was “negatively” related to the intercepts (beaches with high exposure
tended to have lower (below average) intercepts (Richness when NAP = 0) than beaches with
low exposure) and “positively” related to the slopes (beaches with high exposure tended to
have ‘above average’ or less negative slopes (decrease with each one unit increase in NAP)
than beaches with low exposure).

(o) To expand our model to allow for Exposure to explain variation in slopes, write the
Level 1 and Level 2 equations, including Exposure in both Level 2 equations.

Yij = Boj + B1jNAP;j + €5

BOj = ﬁOO + BOlExpj + Uoj Adding the exposure variable to each Level 2 equation

B1j = Bio + P11Exp; + uyq;

(p) Now make the composite equation, what happens?

Yij = Boo + Bo1Expj +ugj + (Bro + B11Exp; + uyj)NAP;j + €5

This creates the ‘cross-level interaction’ term of 511 Exp; X NAP;; so 1 is how much the slope of NAP
differs between high and low exposure beaches.

Fit the model

model4 = 1lmer(Richness ~ NAP*ExposureCat + (1 | Beach), data = rikzdata, REML=FA
LSE) #with interaction
summary(model4, corr = F)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Richness ~ NAP * ExposureCat + (1 | Beach)
Data: rikzdata

AIC BIC loglik -2*log(L) df.resid
242.1 253.0 -115.1 230.1 39

Scaled residuals:
Min 1Q Median 3Q Max
-1.596 -0.417 -0.085 0.231 3.841

Random effects:
Groups  Name Variance Std.Dev.
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Beach (Intercept) 2.21 1.49
Residual 8.21 2.87
Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.870 0.896 9.90

NAP -3.492 0.607 -5.76

ExposureCatTRUE -5.262 1.358 -3.87

NAP :ExposureCatTRUE 2.025 0.915 2.21

texreg::screenreg(list(model3, modeld4), digits = 3, single.row = TRUE, stars = 0,

custom.model.names = c("exposure”, "interaction"), custom.note = "")
exposure interaction

(Intercept) 8.608 (0.932) 8.870 (0.896)

NAP -2.604 (0.479) -3.492 (0.607)

ExposureCatTRUE -4.530 (1.383) -5.262 (1.358)

NAP:ExposureCatTRUE 2.025 (0.915)

AIC 244,759 242.114

BIC 253.792 252.953

Log Likelihood -117.379 -115.057

Num. obs. 45 45

Num. groups: Beach 9 9

Var: Beach (Intercept) 2.419 2.208

Var: Residual 9.117 8.210

anova(model3, model4d)
Data: rikzdata
Models:
model3: Richness ~ NAP + ExposureCat + (1 | Beach)
model4: Richness ~ NAP * ExposureCat + (1 | Beach)
npar AIC BIC loglLik -2*log(L) Chisq Df Pr(>Chisq)

model3 5 245 254 -117 235
model4 6 242 253 -115 230 4.65 1 0.031 *
Signif. codes: © '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1

(q) How many parameters did we add to the model? What is the estimate for that
parameter? Is it statistically significant? How are you deciding?

This just adds one parameter to the model ;4. The LRT test for this coefficient gives a p-value of .03,
so it’s moderately significant.

(r) In particular, what is the overall intercept and the overall slope for low exposure
beaches, and the overall intercept and the overall slope for high exposure beaches?

Use these values to create a new graph:
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(i) Code

preds = predict(model4, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat ))

+

geom_smooth(method = "1m", formula = y ~ x, alpha = .5, se = FALSE) +

geom_abline(intercept = 8.9695, slope = -3.49) +

geom_abline(intercept = 8.9695 -5.2625, slope = -3.49 + 2.025) +

geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) +
theme_bw()

ExposureCat

FALSE
== TRUE

preds

(s) Do we still have significant random variation in the slopes?

model5 = lmer(Richness ~ NAP*ExposureCat + (1 + NAP | Beach), data = rikzdata, RE
ML=FALSE)
summary(model5, corr = F)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Richness ~ NAP * ExposureCat + (1 + NAP | Beach)
Data: rikzdata

AIC BIC loglik -2*log(L) df.resid
243.2 257.7 -113.6 227.2 37

Scaled residuals:
Min 1Q Median 3Q Max
-1.757 -0.455 -0.158 ©0.251 3.200
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Random effects:

Groups  Name Variance Std.Dev. Corr
Beach (Intercept) 3.83 1.96

NAP 1.00 1.00 -1.00
Residual 7.16 2.68

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.959 1.047 8.55
NAP -3.881 0.723 -5.37
ExposureCatTRUE -5.382 1.586 -3.39
NAP:ExposureCatTRUE 2.446 1.099 2.23

optimizer (nloptwrap) convergence code: @ (0OK)

boundary (singular) fit: see help('isSingular')

anova(model4, model5)

Data: rikzdata

Models:

model4: Richness ~ NAP * ExposureCat + (1 | Beach)

model5: Richness ~ NAP * ExposureCat + (1 + NAP | Beach)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

model4d 6 242 253 -115 230

model5 8 243 258 -114 227 2.89 2 0.24

Tthe p-value for the likelihood ratio test is not small (0.24), so we don’t need to add random slopes to

the model that already has the cross-level interaction.

Notes

*  “In cases where the explanation of the random effects works extremely well, one may end
up with models with no random effects at level two... random intercepts, slope have zero
variance.. Omitted.. The resulting model may be analyzed just as well with OLS
regression analysis... within group dependence has been fully explained by the available
explanatory variables/interactions (no more dependence in the residuals).”

Properties of random slopes model

But there might be another reason to use random slopes... Rerun model 1 using Ime instead
of Imer.
#install.packages("nlme")
library(nlme)
modellB = lme(Richness ~ NAP, random = ~ 1 | Beach, data = rikzdata)
summary(modellB) #can't suppress the correlation of fixed effects output
Linear mixed-effects model fit by REML

Data: rikzdata

AIC BIC loglLik
247.5 254.5 -119.7

Random effects:
Formula: ~1 | Beach
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(Intercept) Residual
StdDev: 2.944 3.06

Fixed effects: Richness ~ NAP
Value Std.Error DF t-value p-value

(Intercept) 6.582 1.0958 35 6.007 0
NAP -2.568 0.4947 35 -5.192 (%]
Correlation:

(Intr)
NAP -0.157

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.4227 -0.4848 -0.1576 0.2519 3.9794

Number of Observations: 45
Number of Groups: 9

The nlme package allows us to see that variance-covariance matrix for each beach. Here is
that matrix for the five observations in Beach 1, and then the correlation matrix.
vcm = getVarCov(modellB, type = "marginal”, individual = "1"); vcm
Beach 1
Marginal variance covariance matrix
1 2 3 4 5
18.030 8.668 8.668 8.668 8.668 = Ty,
8.668 18.030 8.668 8.668 8.668
8.668 8.668 18.030 8.668 8.668
8.668 8.668 8.668 18.030 8.668
8.668 8.668 8.668 8.668 18.030
Standard Deviations: 4.246 4.246 4.246 4.246 4.246
cov2cor(vem[[1]])
1 2 3 4 5

1 1.0000 0.4807 0.4807 0.4807 0.4807 = ICC = 8.688/J18D3><(1803)
2 0.4807 1.0000 0.4807 0.4807 0.4807
3 0.4807 0.4807 1.0000 0.4807 0.4807
4 0.4807 0.4807 0.4807 1.0000 0.4807
5 0.4807 0.4807 0.4807 0.4807 1.0000
#What are these again?
getVarCov(modellB, type = "conditional")
Beach 1
Conditional variance covariance matrix
1 2 3 4 5
9.362 0.000 0.000 0.000 0.000
0.000 9.362 0.000 0.000 0.000
0.000 0.000 9.362 0.000 0.000
0.000 0.000 0.000 9.362 0.000
0.000 0.000 0.000 0.000 9.362
Standard Deviations: 3.06 3.06 3.06 3.06 3.06
getVarCov(modellB)

uuh wNnPR

uuh wNnPR
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Random effects variance covariance matrix
(Intercept)
(Intercept) 8.668 77
Standard Deviations: 2.944

(c) What are the values along the diagonal of the vem matrix? What are the off-diagonal
values?

The variances for each observation in the beach (if we were to keep measuring that site). We are
assuming those measurements are the same for each site and for each beach =2.9442 + 3.06% = 18.03.
The off diagonal values are the covariances of two observations in the same beach.

(e) What are the off-diagonal values after running cov2cor? How do we convert?

These are now the correlations.

corr(sitei, sitej) = cov(sitei, sitej)/(SD(sitei)SD(sitej)

8.6675/18.03 = 0.48, the interclass correlation coefficient after adjusting for NAP (between two
observations on the same beach with same NAP)

Now let’s look at the random coefficients (add the random slopes) model (with Ime):

summary(model2B <- lme(Richness ~ NAP, random = ~ 1 + NAP | Beach, data = rikzdata)
)
Linear mixed-effects model fit by REML
Data: rikzdata
AIC BIC loglik
244 .4 255 -116.2

Random effects:
Formula: ~1 + NAP | Beach
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 3.549 (Intr)
NAP 1.715 -0.99
Residual 2.703

Fixed effects: Richness ~ NAP
Value Std.Error DF t-value p-value
(Intercept) 6.589 1.2648 35 5.209 0.0000
NAP -2.830 0.7229 35 -3.915 0.0004
Correlation:
(Intr)
NAP -0.819

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.8213 -0.3411 -0.1675 ©0.1921 3.0397

Number of Observations: 45
Number of Groups: 9
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getVarCov(model2B)
Random effects variance covariance matrix
(Intercept) NAP
(Intercept) 12.596 -6.027
NAP -6.027 2.941
Standard Deviations: 3.549 1.715
vcm2 <- getVarCov(model2B, type = "marginal", individual = "1")
vcm2
Beach 1
Marginal variance covariance matrix
1 2 3 4 5
1 19.365 18.43 20.20 8.694 16.36
2 18.431 35.55 30.96 13.250 25.05
3 20.200 30.96 41.25 14.515 27.46
4 8.694 13.25 14.52 13.592 11.77
5 16.356 25.05 27.46 11.766 29.52
Standard Deviations: 4.401 5.962 6.423 3.687 5.433

(f) What changes about the matrix? Good news or bad news?
We are no longer assuming the variances are the same across the sites (or between the beaches). This
could model the unequal variance we saw at the very beginning.

(g) According to the model, which site(s) in Beach 1 have larger variance?

sites 2 and 3

Examine the data for the 5 observations for beach 1:

head(rikzdata, 5)

Sample Richness Exposure NAP Beach ExposureCat
1 1 11 10 0.045 1 FALSE
2 2 10 10 -1.036 1 FALSE
3 3 13 10 -1.336 1 FALSE
4 4 11 10 0.616 1 FALSE
5 5 10 10 -0.684 1 FALSE

(h) What is true about the NAP values for the observations with higher predicted
variance? The smallest predicted variance? In other words, the variance in the
predicted Richness values (increases/decreases) with NAP?

Sites 2 and 3 have the most negative NAP values. Sites 1 and 4 have the positive (higher) NAP values
and the least variability.

Correlations for random slopes model

cov2cor(vem2[[1]])

1 2 3 4 5
1 1.0000 0.7025 0.7147 0.5359 0.6841
2 0.7025 1.0000 0.8085 0.6028 0.7732
3 0.7147 0.8085 1.0000 0.6130 0.7868
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4 0.5359 0.6028 0.6130 1.0000 0.5874
5 0.6841 0.7732 0.7868 0.5874 1.0000

(i) According to the fitted model, is the correlation between two observations within
beach 1 the same for any two observations, or does it vary depending on which two
observations you are pairing? Identify two observations in beach 1 that are more highly
correlated, and two observations in beach 1 that are less correlated. (Do you see a
pattern in their NAP values?)

Now the correlation of Richness values between a pair of sites within the same beach depends on
which two sites you look at

The point is that a random slopes model also allows us to model heteroscedasticity in the data
(vij) and that the amount of correlation between two observations depends on the

corresponding x;; values.

On HW 6, you will show that the variance is a quadratic function in NAP 7§ + x775 + 2x;7o1 +

0.2

(i) so is minimized at x;; =
(_1)T01/T12
(k) What does 7, represent? What is the estimate for this model?

This was the covariance between the intercepts and the slopes. The Imer output gives us the
correlation which we can convert -.99 x 3.549 x 1.715. Or we can use getVarCov(model2B), -6.026

(I) Find the value of NAP that minimizes Var(y;;) for our fitted model. Is this a value in
the range of our data?? (Does your answer agree with the graph of the model?)

(-1) x-6.026/2.9411 = 2.05. It makes sense that this NAP value is ‘just off the graph’ as the lines are
fanning in for the NAP values we have in our data.

The idea is when the correlation between the intercepts and slopes is negative, the lines are
“fanning in” and variability is smaller for larger x values. If the correlation between the slopes
and intercepts is positive, then the lines will “fan out” and variability in y is increasing for larger
x values. But also watch for the point where they switch from fanning in to fanning out... If the
correlation is close to zero, then there is no fanning, and you will have a scatter of positive and
negative lines.

You will shown in HW 6, that the covariance between two observations also depends on the x
values: COU(yij, yk]) = Tg + (xl-j + xkj)T()l + Xijxij%

(m) What happens to the covariance between two observations when NAP = 0 (for both
observations)? What about the correlation?

cov = £2 = 3.54972 = 12.59; correlation divides this by the total variance: 73 /(t5 + d2) - the ICC
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Notes:

Bottom line: the variance and covariance in our data (y;;) values now depend on the x;;
values, but 73 represents the variation in the intercepts (when x = 0) and (z3)/(z3 + o) is
the correlation of two measurements on the same beach with x = 0.

But in general now have “fanning lines” and it may not make sense to calculate ICC. Or do
so conditional on a particular value of x. In general, be more detailed when talked about

“variability explained.”





