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Stat 414 - Day 12 
Random Slopes (4.6, 5.2) 

Last Time 

• Interaction terms change slopes 
• Interpret “main effects” by “zeroing out” the interaction term. 

• Otherwise, coefficient of 𝑥1 = 𝛽̂1 + 𝛽̂3𝑥2 
• With interactions (and polynomial terms), centering quantitative variables can reduce 

multicollinearity 
• We fit a “random coefficient model” 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝜖𝑖𝑗 where 𝛽0𝑗 = 𝛽00 + 𝑢0𝑗 with 

𝑢0𝑗 ∼ 𝑁(0, 𝜏0
2) and 𝛽1𝑗 = 𝛽10 + 𝑢1𝑗 with 𝑢1𝑗 ∼ 𝑁(0, 𝜏1

2) 

• So (assuming) 𝛽1𝑗 are normally distributed around 𝛽10 

• This adds a variance component for the slopes (𝜏1
2) as well as a covariance between the 

random slopes and random intercepts (𝜏01) 

Example 1: Beaches cont. 

Richness varies by Beach, so including Beach in the model (as fixed or random effects) should 
give us more accurate standard errors. 
library(lme4) 
library(tidyverse) 
 
rikzdata <- read.table("http://www.rossmanchance.com/stat414/data/RIKZ.txt", header
=TRUE) 
rikzdata$Beach = factor(rikzdata$Beach) 
 
model0 = lmer(Richness ~ 1 + (1 | Beach), data = rikzdata) 

(a) Calculate and interpret the ICC value 

  Code 

performance::icc(model0) 
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.403 
  Unadjusted ICC: 0.403 

The expected correlation of two observations in the same beach is 0.403/About 40% of the variation in 
Richness values is between beaches. 

Fit the random intercepts model with NAP 

summary(model1 <- lmer(Richness ~ NAP + (1 | Beach), data  = rikzdata), corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: Richness ~ NAP + (1 | Beach) 
   Data: rikzdata 
 
REML criterion at convergence: 239.5 
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Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.423 -0.485 -0.158  0.252  3.979  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Beach    (Intercept) 8.67     2.94     
 Residual             9.36     3.06     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    6.582      1.096    6.01 
NAP           -2.568      0.495   -5.19 
#library(tidyverse) 
preds = predict(model1, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) + 
  geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
  geom_abline(intercept = 6.58, slope = -2.83) + 
  geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) + 
  theme_bw() 

 
plot(model1) 
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#performance::check_model(model1) 

(b) Do the regression model assumptions appear to be met? 
We also see evidence of unequal variance. 

But we see some patterns (including related to the beaches) in the residuals and this tells us 
that we might be able to improve the fit between the model and the data. 

Random Slopes 

So then we tried a random slopes model (like an interaction between NAP and Beach), and the 

variation in the slopes (𝜏̂1
2) was statistically significant. 

model2 = lmer(Richness ~ NAP + (1 + NAP | Beach), data = rikzdata, REML = FALSE) 
summary(model2, corr=FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP + (1 + NAP | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    246.7     257.5    -117.3     234.7        39  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.798 -0.342 -0.183  0.175  3.139  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
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 Beach    (Intercept) 10.95    3.31           
          NAP          2.50    1.58     -1.00 
 Residual              7.17    2.68           
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    6.582      1.188    5.54 
NAP           -2.829      0.685   -4.13 
optimizer (nloptwrap) convergence code: 0 (OK) 
boundary (singular) fit: see help('isSingular') 
ranef(model2) 
$Beach 
  (Intercept)     NAP 
1      1.7986 -0.8598 
2      5.6926 -2.7212 
3     -2.7427  1.3111 
4     -2.9682  1.4189 
5      4.5045 -2.1532 
6     -2.1372  1.0216 
7     -2.4399  1.1663 
8     -1.4646  0.7001 
9     -0.2431  0.1162 
 
with conditional variances for "Beach"  
anova(model1, model2) 
Data: rikzdata 
Models: 
model1: Richness ~ NAP + (1 | Beach) 
model2: Richness ~ NAP + (1 + NAP | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model1    4 250 257   -121       242                       
model2    6 247 258   -117       235  7.17  2      0.028 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
preds = predict(model2, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) + 
  geom_smooth(method = "lm", formula = y ~ x, alpha = .5, se = FALSE) + 
  geom_abline(intercept = 6.58, slope = -2.83) + 
  geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) + 
  theme_bw() 
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ggplot(rikzdata, aes(x = NAP, y = Richness)) + 
  geom_point() + 
  geom_smooth(method="lm", formula= y ~ x, se=FALSE) + 
  geom_line(aes(y= preds), color = "red") + 
  facet_wrap(~Beach) +  
  theme_bw()  
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Alternatively 

One recommended approach for model selection is to start with all potential fixed effects 
(including interactions), and then decide on the random effects (e.g., slopes and/or intercepts). 
Then use that model to pare down the fixed effects. 

Fit the random intercepts model including NAP and Exposure. 

rikzdata$ExposureCat = (rikzdata$Exposure > 10) 
model3 = lmer(Richness ~ NAP + ExposureCat + (1  | Beach), data  = rikzdata,  REML=
FALSE) 
summary(model3, corr=F) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP + ExposureCat + (1 | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    244.8     253.8    -117.4     234.8        40  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.517 -0.467 -0.085  0.218  3.932  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Beach    (Intercept) 2.42     1.56     
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 Residual             9.12     3.02     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
                Estimate Std. Error t value 
(Intercept)        8.608      0.932    9.24 
NAP               -2.604      0.479   -5.44 
ExposureCatTRUE   -4.530      1.383   -3.28 
anova(model1, model3) 
Data: rikzdata 
Models: 
model1: Richness ~ NAP + (1 | Beach) 
model3: Richness ~ NAP + ExposureCat + (1 | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)    
model1    4 250 257   -121       242                        
model3    5 245 254   -117       235  7.07  1     0.0078 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
#Our predicted model 
preds = predict(model3, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat )) + 
geom_smooth(method = "lm", formula = y ~ x, alpha = .5, se = FALSE) + 
geom_abline(intercept = 8.1923-3.3238, slope = -2.85) + 
geom_abline(intercept = 8.1923, slope = -2.85) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
  theme_bw() 
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(n) Is the Exposure variable significant? Do you see a substantial improvement in the fit
of the model compared to Model 1? How do the variance components change/what has
been the main impact?

The ExposureCat variable is significant (The LRT test comparing model 1 and model 3 gives a p-value = 
.0078). The AIC reduces by about 5 (which is decent). The unexplained variation in the intercepts 
reduced from 8.668 to 2.419. 

Cross-level Interaction 

We saw that Exposure was “negatively” related to the intercepts (beaches with high exposure 
tended to have lower (below average) intercepts (Richness when NAP = 0) than beaches with 
low exposure) and “positively” related to the slopes (beaches with high exposure tended to 
have ‘above average’ or less negative slopes (decrease with each one unit increase in NAP) 
than beaches with low exposure). 

(o) To expand our model to allow for Exposure to explain variation in slopes, write the
Level 1 and Level 2 equations, including Exposure in both Level 2 equations.

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 

𝛽0𝑗 = 𝛽00 + 𝛽01𝐸𝑥𝑝𝑗 + 𝑢0𝑗 

𝛽1𝑗 = 𝛽10 + 𝛽11𝐸𝑥𝑝𝑗 + 𝑢1𝑗 

(p) Now make the composite equation, what happens?

𝑦𝑖𝑗 = 𝛽00 + 𝛽01𝐸𝑥𝑝𝑗 + 𝑢0𝑗 + (𝛽10 + 𝛽11𝐸𝑥𝑝𝑗 + 𝑢1𝑗)𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 

This creates the ‘cross-level interaction’ term of 𝛽11𝐸𝑥𝑝𝑗 × 𝑁𝐴𝑃𝑖𝑗 so 𝛽11 is how much the slope of NAP 

differs between high and low exposure beaches. 

Fit the model 

model4 = lmer(Richness ~ NAP*ExposureCat + (1  | Beach), data  = rikzdata,  REML=FA
LSE)  #with interaction 
summary(model4, corr = F) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP * ExposureCat + (1 | Beach) 
 Data: rikzdata 

 AIC  BIC  logLik -2*log(L)  df.resid 
 242.1  253.0 -115.1  230.1  39 

Scaled residuals: 
 Min  1Q Median  3Q  Max 

-1.596 -0.417 -0.085  0.231  3.841

Random effects: 
 Groups  Name  Variance Std.Dev. 

Adding the exposure variable to each Level 2 equation
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 Beach    (Intercept) 2.21     1.49     
 Residual             8.21     2.87     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
                    Estimate Std. Error t value 
(Intercept)            8.870      0.896    9.90 
NAP                   -3.492      0.607   -5.76 
ExposureCatTRUE       -5.262      1.358   -3.87 
NAP:ExposureCatTRUE    2.025      0.915    2.21 
texreg::screenreg(list(model3, model4), digits = 3, single.row = TRUE, stars = 0, 
custom.model.names = c("exposure",  "interaction"), custom.note = "") 
 
========================================================== 
                        exposure          interaction      
---------------------------------------------------------- 
(Intercept)                8.608 (0.932)     8.870 (0.896) 
NAP                       -2.604 (0.479)    -3.492 (0.607) 
ExposureCatTRUE           -4.530 (1.383)    -5.262 (1.358) 
NAP:ExposureCatTRUE                          2.025 (0.915) 
---------------------------------------------------------- 
AIC                      244.759           242.114         
BIC                      253.792           252.953         
Log Likelihood          -117.379          -115.057         
Num. obs.                 45                45             
Num. groups: Beach         9                 9             
Var: Beach (Intercept)     2.419             2.208         
Var: Residual              9.117             8.210         
========================================================== 
anova(model3, model4) 
Data: rikzdata 
Models: 
model3: Richness ~ NAP + ExposureCat + (1 | Beach) 
model4: Richness ~ NAP * ExposureCat + (1 | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model3    5 245 254   -117       235                       
model4    6 242 253   -115       230  4.65  1      0.031 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(q) How many parameters did we add to the model? What is the estimate for that 
parameter? Is it statistically significant? How are you deciding? 
This just adds one parameter to the model 𝛽10. The LRT test for this coefficient gives a p-value of .03, 
so it’s moderately significant. 

(r) In particular, what is the overall intercept and the overall slope for low exposure 
beaches, and the overall intercept and the overall slope for high exposure beaches? 

Use these values to create a new graph: 
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  Code 

preds = predict(model4, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat )) 
+ 
geom_smooth(method = "lm", formula = y ~ x, alpha = .5, se = FALSE) + 
geom_abline(intercept = 8.9695, slope = -3.49) + 
geom_abline(intercept = 8.9695 -5.2625, slope = -3.49 + 2.025) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
  theme_bw() 

 

(s) Do we still have significant random variation in the slopes? 

model5 = lmer(Richness ~ NAP*ExposureCat + (1 + NAP | Beach), data  = rikzdata,  RE
ML=FALSE) 
summary(model5, corr = F) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP * ExposureCat + (1 + NAP | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    243.2     257.7    -113.6     227.2        37  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.757 -0.455 -0.158  0.251  3.200  
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Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
 Beach    (Intercept) 3.83     1.96           
          NAP         1.00     1.00     -1.00 
 Residual             7.16     2.68           
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
                    Estimate Std. Error t value 
(Intercept)            8.959      1.047    8.55 
NAP                   -3.881      0.723   -5.37 
ExposureCatTRUE       -5.382      1.586   -3.39 
NAP:ExposureCatTRUE    2.446      1.099    2.23 
optimizer (nloptwrap) convergence code: 0 (OK) 
boundary (singular) fit: see help('isSingular') 
anova(model4, model5) 
Data: rikzdata 
Models: 
model4: Richness ~ NAP * ExposureCat + (1 | Beach) 
model5: Richness ~ NAP * ExposureCat + (1 + NAP | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq) 
model4    6 242 253   -115       230                     
model5    8 243 258   -114       227  2.89  2       0.24 

Tthe p-value for the likelihood ratio test is not small (0.24), so we don’t need to add random slopes to 
the model that already has the cross-level interaction. 

Notes 
• “In cases where the explanation of the random effects works extremely well, one may end 

up with models with no random effects at level two… random intercepts, slope have zero 
variance.. Omitted.. The resulting model may be analyzed just as well with OLS 
regression analysis… within group dependence has been fully explained by the available 
explanatory variables/interactions (no more dependence in the residuals).” 

Properties of random slopes model 

But there might be another reason to use random slopes… Rerun model 1 using lme instead 
of lmer. 
#install.packages("nlme") 
library(nlme) 
model1B = lme(Richness ~ NAP, random = ~ 1 | Beach, data = rikzdata) 
summary(model1B)  #can't suppress the correlation of fixed effects output 
Linear mixed-effects model fit by REML 
  Data: rikzdata  
    AIC   BIC logLik 
  247.5 254.5 -119.7 
 
Random effects: 
 Formula: ~1 | Beach 
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        (Intercept) Residual 
StdDev:       2.944     3.06 
 
Fixed effects:  Richness ~ NAP  
             Value Std.Error DF t-value p-value 
(Intercept)  6.582    1.0958 35   6.007       0 
NAP         -2.568    0.4947 35  -5.192       0 
 Correlation:  
    (Intr) 
NAP -0.157 
 
Standardized Within-Group Residuals: 
    Min      Q1     Med      Q3     Max  
-1.4227 -0.4848 -0.1576  0.2519  3.9794  
 
Number of Observations: 45 
Number of Groups: 9  

The nlme package allows us to see that variance-covariance matrix for each beach. Here is 
that matrix for the five observations in Beach 1, and then the correlation matrix. 
vcm = getVarCov(model1B, type = "marginal", individual = "1"); vcm 
Beach 1  
Marginal variance covariance matrix 
       1      2      3      4      5 
1 18.030  8.668  8.668  8.668  8.668 = 𝜏̂01 
2  8.668 18.030  8.668  8.668  8.668 
3  8.668  8.668 18.030  8.668  8.668 
4  8.668  8.668  8.668 18.030  8.668 
5  8.668  8.668  8.668  8.668 18.030 
  Standard Deviations: 4.246 4.246 4.246 4.246 4.246  
cov2cor(vcm[[1]]) 
       1      2      3      4      5 

1 1.0000 0.4807 0.4807 0.4807 0.4807 = ICC = 8.688/√18.03 × (18.03) 
2 0.4807 1.0000 0.4807 0.4807 0.4807 
3 0.4807 0.4807 1.0000 0.4807 0.4807 
4 0.4807 0.4807 0.4807 1.0000 0.4807 
5 0.4807 0.4807 0.4807 0.4807 1.0000 
#What are these again? 
getVarCov(model1B, type = "conditional") 
Beach 1  
Conditional variance covariance matrix 
      1     2     3     4     5 
1 9.362 0.000 0.000 0.000 0.000 
2 0.000 9.362 0.000 0.000 0.000 
3 0.000 0.000 9.362 0.000 0.000 
4 0.000 0.000 0.000 9.362 0.000 
5 0.000 0.000 0.000 0.000 9.362 
  Standard Deviations: 3.06 3.06 3.06 3.06 3.06  
getVarCov(model1B) 
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Random effects variance covariance matrix 
            (Intercept) 
(Intercept)       8.668  𝜏̂0

2 
  Standard Deviations: 2.944  

(c) What are the values along the diagonal of the vcm matrix? What are the off-diagonal 
values? 
The variances for each observation in the beach (if we were to keep measuring that site). We are 
assuming those measurements are the same for each site and for each beach  = 2.9442 + 3.062 = 18.03. 
The off diagonal values are the covariances of two observations in the same beach. 

(e) What are the off-diagonal values after running cov2cor? How do we convert? 

These are now the correlations. 
corr(sitei, sitej) = cov(sitei, sitej)/(SD(sitei)SD(sitej) 
8.6675/18.03 = 0.48, the interclass correlation coefficient after adjusting for NAP (between two 
observations on the same beach with same NAP) 

Now let’s look at the random coefficients (add the random slopes) model (with lme): 

summary(model2B <- lme(Richness ~ NAP, random = ~ 1 + NAP | Beach, data = rikzdata)
) 
Linear mixed-effects model fit by REML 
  Data: rikzdata  
    AIC BIC logLik 
  244.4 255 -116.2 
 
Random effects: 
 Formula: ~1 + NAP | Beach 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev Corr   
(Intercept) 3.549  (Intr) 
NAP         1.715  -0.99  
Residual    2.703         
 
Fixed effects:  Richness ~ NAP  
             Value Std.Error DF t-value p-value 
(Intercept)  6.589    1.2648 35   5.209  0.0000 
NAP         -2.830    0.7229 35  -3.915  0.0004 
 Correlation:  
    (Intr) 
NAP -0.819 
 
Standardized Within-Group Residuals: 
    Min      Q1     Med      Q3     Max  
-1.8213 -0.3411 -0.1675  0.1921  3.0397  
 
Number of Observations: 45 
Number of Groups: 9  
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getVarCov(model2B) 
Random effects variance covariance matrix 
            (Intercept)    NAP 
(Intercept)      12.596 -6.027 
NAP              -6.027  2.941 
  Standard Deviations: 3.549 1.715  
vcm2 <- getVarCov(model2B, type = "marginal", individual = "1") 
vcm2 
Beach 1  
Marginal variance covariance matrix 
       1     2     3      4     5 
1 19.365 18.43 20.20  8.694 16.36 
2 18.431 35.55 30.96 13.250 25.05 
3 20.200 30.96 41.25 14.515 27.46 
4  8.694 13.25 14.52 13.592 11.77 
5 16.356 25.05 27.46 11.766 29.52 
  Standard Deviations: 4.401 5.962 6.423 3.687 5.433  

(f) What changes about the matrix? Good news or bad news? 
We are no longer assuming the variances are the same across the sites (or between the beaches). This 
could model the unequal variance we saw at the very beginning. 

(g) According to the model, which site(s) in Beach 1 have larger variance? 

sites 2 and 3 

Examine the data for the 5 observations for beach 1: 

head(rikzdata, 5) 
  Sample Richness Exposure    NAP Beach ExposureCat 
1      1       11       10  0.045     1       FALSE 
2      2       10       10 -1.036     1       FALSE 
3      3       13       10 -1.336     1       FALSE 
4      4       11       10  0.616     1       FALSE 
5      5       10       10 -0.684     1       FALSE 

(h) What is true about the NAP values for the observations with higher predicted 
variance? The smallest predicted variance? In other words, the variance in the 
predicted Richness values (increases/decreases) with NAP? 
Sites 2 and 3 have the most negative NAP values. Sites 1 and 4 have the positive (higher) NAP values 
and the least variability. 

Correlations for random slopes model 

cov2cor(vcm2[[1]]) 
       1      2      3      4      5 
1 1.0000 0.7025 0.7147 0.5359 0.6841 
2 0.7025 1.0000 0.8085 0.6028 0.7732 
3 0.7147 0.8085 1.0000 0.6130 0.7868 
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4 0.5359 0.6028 0.6130 1.0000 0.5874 
5 0.6841 0.7732 0.7868 0.5874 1.0000 

(i) According to the fitted model, is the correlation between two observations within 
beach 1 the same for any two observations, or does it vary depending on which two 
observations you are pairing? Identify two observations in beach 1 that are more highly 
correlated, and two observations in beach 1 that are less correlated. (Do you see a 
pattern in their NAP values?) 
Now the correlation of Richness values between a pair of sites within the same beach depends on 
which two sites you look at 

The point is that a random slopes model also allows us to model heteroscedasticity in the data 
(𝑦𝑖𝑗) and that the amount of correlation between two observations depends on the 

corresponding 𝑥𝑖𝑗 values. 

On HW 6, you will show that the variance is a quadratic function in NAP 𝜏0
2 + 𝑥𝑖𝑗

2 𝜏1
2 + 2𝑥𝑖𝑗𝜏01 +

𝜎2 

(j) so is minimized at 𝑥𝑖𝑗 = 

(−1)𝜏01/𝜏1
2 

(k) What does 𝜏01 represent? What is the estimate for this model? 

This was the covariance between the intercepts and the slopes. The lmer output gives us the 
correlation which we can convert -.99 x 3.549 x 1.715. Or we can use getVarCov(model2B), -6.026 

(l) Find the value of NAP that minimizes 𝑉𝑎𝑟(𝑦𝑖𝑗) for our fitted model. Is this a value in 

the range of our data?? (Does your answer agree with the graph of the model?) 

(-1) x -6.026/2.9411 = 2.05. It makes sense that this NAP value is ‘just off the graph’ as the lines are 
fanning in for the NAP values we have in our data. 

The idea is when the correlation between the intercepts and slopes is negative, the lines are 
“fanning in” and variability is smaller for larger 𝑥 values. If the correlation between the slopes 
and intercepts is positive, then the lines will “fan out” and variability in 𝑦 is increasing for larger 

𝑥 values. But also watch for the point where they switch from fanning in to fanning out… If the 
correlation is close to zero, then there is no fanning, and you will have a scatter of positive and 
negative lines. 

You will shown in HW 6, that the covariance between two observations also depends on the 𝑥 

values: 𝐶𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑘𝑗) = 𝜏0
2 + (𝑥𝑖𝑗 + 𝑥𝑘𝑗)𝜏01 + 𝑥𝑖𝑗𝑥𝑘𝑗𝜏1

2 

(m) What happens to the covariance between two observations when NAP = 0 (for both 
observations)? What about the correlation? 

cov = 𝜏̂0
2 = 3.549^2 = 12.59; correlation divides this by the total variance: 𝜏0

2/(𝜏0
2 + 𝜎2) - the ICC 
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Notes: 
• Bottom line: the variance and covariance in our data (𝑦𝑖𝑗) values now depend on the 𝑥𝑖𝑗 

values, but 𝜏0
2 represents the variation in the intercepts (when 𝑥 = 0) and (𝜏0

2)/(𝜏0
2 + 𝜎2) is 

the correlation of two measurements on the same beach with 𝑥 = 0. 
• But in general now have “fanning lines” and it may not make sense to calculate ICC. Or do 

so conditional on a particular value of 𝑥. In general, be more detailed when talked about 
“variability explained.” 




