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Stat 414 - Day 11 
Interactions 

Last Time 

• Splitting the “composite equation” into “level equations” 
• Adding Level 1 and Level 2 variables into the multilevel model and seeing what Level 1 

and/or Level 2 (and total) variance is explained. 
• Visualizing fitted models 

Example 1: Forced Expiratory Volume (FEV) 

Data were collected on 654 youths in the area of East Boston during the middle to late 1970s. 
The youth in the study were of ages 3 to 19 years, an age period during which much physical 
development, such as increase in lung capacity, takes place. The objective was to analyze the 
relationship between smoking status, and forced expiratory volume (FEV, measured in liters). 
(FEV is a measure of strength of a person’s lungs – the maximum volume of air a person can 
blow out in the first second; higher numbers are better/healthier lungs) 
FEVdata = read.table("https://www.rossmanchance.com/stat414F20/data/FEV.txt", heade
r=TRUE) 
contrasts(factor(FEVdata$Smoker)) #see how R will code the variable 
    yes 
no    0 
yes   1 
#FEVdata$Smoker = factor(FEVdata$Smoker) 
#contrasts(FEVdata$Smoker) <- contr.sum(levels(FEVdata$Smoker)) 
# effect coding 
#contrasts(FEVdata$Smoker) 
model1 <- lm(FEV ~  Smoker, data = FEVdata) 
summary(model1) 
 
Call: 
lm(formula = FEV ~ Smoker, data = FEVdata) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-1.775 -0.634 -0.102  0.480  3.227  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.5661     0.0347   74.04   <2e-16 *** 
Smokeryes     0.7107     0.1099    6.46    2e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.841 on 652 degrees of freedom 
Multiple R-squared:  0.0602,    Adjusted R-squared:  0.0588  
F-statistic: 41.8 on 1 and 652 DF,  p-value: 1.99e-10 
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par(mfrow=c(2,2)) 
plot(model1) 

 
par(mfrow=c(1,1)) 

(a) Interpret the coefficient of smoker in this model. Statistically significant? Any 
problems with the model? 
On average, nonsmokers have 0.71 liters lower FEV than smokers, with a very small p-value so 
statistically significant (t = 6.464), though we do see some evidence of unequal variance in FEV values 
between the smokers and non-smokers 

Add Age to the model 
model2 <- lm(FEV ~ Smoker + Age, data = FEVdata)  
summary(model2) 
 
Call: 
lm(formula = FEV ~ Smoker + Age, data = FEVdata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.6653 -0.3564 -0.0508  0.3495  2.0894  
 
Coefficients: 
            Estimate Std. Error t value  Pr(>|t|)     
(Intercept)  0.36737    0.08144    4.51 0.0000076 *** 
Smokeryes   -0.20899    0.08075   -2.59    0.0099 **  
Age          0.23060    0.00818   28.18   < 2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.565 on 651 degrees of freedom 
Multiple R-squared:  0.577, Adjusted R-squared:  0.575  
F-statistic:  443 on 2 and 651 DF,  p-value: <2e-16 
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newx1 = data.frame(Age = FEVdata$Age, Smoker = rep("yes", 654)) 
newx2 = data.frame(Age = FEVdata$Age, Smoker = rep("no", 654)) 
fits1=predict(model2, newx1) 
fits2=predict(model2, newx2) 
 
#may need to copy these into Session window/run them as a set 
#plot(FEVdata$FEV ~ FEVdata$Age, col=as.factor(FEVdata$Smoker)) 
#lines(FEVdata$Age, fits1, col=1) 
#lines(FEVdata$Age, fits2, col=2) 
 
#or, with tidyverse 
ggplot(FEVdata,aes(x=Age,y=FEV,color= Smoker))+ 
  geom_point()+ 
  geom_line(aes(y=predict(model2))) + 
  theme_bw() 

 
par(mfrow=c(2,2)) 
plot(model2) 

 
par(mfrow=c(1,1)) 
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(b) How do we interpret the intercept, coefficient of smoker, and coefficient of age in 
this model? Any problems with the model? 
Intercept: predicted FEV for nonsmoker at 0 years of age; Smoker: comparing smokers and non-
smokers of the same age, the smokers have a predicted FEV .209 liters lower than nonsmokers. 
Comparing smokers to smokers or non-smokers to non-smokers, each one-year increase in age is 
associated with a 0.231 liter increase in FEV. Variability in residuals appears to increase with age. 

Including the binary variable allows the intercepts to differ, but we are still assuming the 
slopes are the same. 

Produce a graph to decide whether there is evidence that the relationship between FEV and 
age differs for the smokers and nonsmokers. 

#coplot(FEV ~ Age | Smoker, data = FEVdata,  
#       panel = function(x,y,...) { 
#         panel.smooth(x,y) 
#        abline(lm(y ~ x), col="blue")  
#        } 
#       ) 
#or 
FEVdata |> 
  ggplot(aes(x = Age, y = FEV)) + 
  geom_point()+ 
  facet_wrap(~Smoker) +  
  geom_smooth(method = "lm", se=FALSE, color="black", formula = y ~ x) + 
  labs(title = "FEV vs. Age for non-smokers and smokers") + 
 theme_bw() 

 

(c) What do you learn? 

The rate of growth with age is larger for the nonsmokers compared to the smokers. 

Definition 
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A quantitative variable and a categorical variable 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 if the slopes of the regression lines 
differ. (After all, it’s the slope that tells us about the association between the two variables, so 
this says the association between the response and the quantitative variable depends on the 
category of the categorical variable.) To include an interaction between 𝑥1 and 𝑥2 in the model, 
we literally multiply 𝑥1 and 𝑥2 together and add this variable to the model. 

(d) What does it mean to multiply Smoker and Age (one categorical and one quantitative 
variable) together? 

but the categorical variable has been coded numerically so we can literally multiply the columns. 

Add the interaction to the model 
#You can make R do the multiplication for you by including Smoker:Age with a colon 
to signify an interaction 
model3 = lm(FEV ~ Smoker + Age + Smoker:Age, data = FEVdata) 
#or 
model3 = lm(FEV ~ Smoker*Age, data = FEVdata) 
#notice the possible short-cut here, the * means include all 3 terms 
summary(model3) 
 
Call: 
lm(formula = FEV ~ Smoker * Age, data = FEVdata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.7664 -0.3495 -0.0336  0.3368  2.0599  
 
Coefficients: 
              Estimate Std. Error t value   Pr(>|t|)     
(Intercept)    0.25340    0.08265    3.07     0.0023 **  
Smokeryes      1.94357    0.41428    4.69 0.00000331 *** 
Age            0.24256    0.00833   29.11    < 2e-16 *** 
Smokeryes:Age -0.16270    0.03074   -5.29 0.00000016 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.554 on 650 degrees of freedom 
Multiple R-squared:  0.594, Adjusted R-squared:  0.592  
F-statistic:  317 on 3 and 650 DF,  p-value: <2e-16 

(e) Write out the full equation and then write out the equation (FEV vs. age) for the 
smokers and the non-smokers. 
Predicted FEV = 0.25 + 1.94 smoker.yes + 0.242 age - 0.163 smoker.yes*age; 
Nonsmokers: -.243 + 0.243 age; 
Smokers = (0.25 + 1.94) + (.243 - .153) age 

(f) How do we interpret the intercept? How do we interpret the coefficient of Age? 

0.25 is predicted FEV for non smoker at age zero. 0.242 is coefficient of age for nonsmokers. 
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(g) What does the sign of the interaction term tell you? (Note: Another way to interpret 
this interaction - what is the slope of age in the full equation?) 

Negative so the coefficient of age gets lower when smoker changes from 0 (nonsmoker) to 1 (smoker) 

ggplot(FEVdata,aes(x=Age,y=FEV,color= Smoker))+geom_point()+ 
  geom_line(aes(y=predict(model3))) + 
   labs(title = "FEV vs. Age with interaction") + 
  theme_bw() 

 

(h) Is this model valid? 

 

    Smoker        Age Smoker:Age  
     32.77       1.29      34.07  

(i) Are you surprised there is some multicollinearity? What could we do about it? 
We are not surprised because the ’smoker*age’ variable is just a subset of the ages in the age variable. 
Because this is a ‘product term’ centering the quantitative variable might help! 
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Because an interaction is a “product,” centering the quantitative variable might help with the 
multicollinearity. 

#Manually centering the age variable 
Age.c = FEVdata$Age - mean(FEVdata$Age) 
model4 = lm(FEV ~ Smoker*Age.c, data = FEVdata) 
 
# or 
model4 = lm(FEV ~ Smoker*scale(Age, center=TRUE), data = FEVdata) 
 
summary(model4) 
 
Call: 
lm(formula = FEV ~ Smoker * scale(Age, center = TRUE), data = FEVdata) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.7664 -0.3495 -0.0336  0.3368  2.0599  
 
Coefficients: 
                                    Estimate Std. Error t value   Pr(>|t|)     
(Intercept)                           2.6623     0.0231  115.49    < 2e-16 *** 
Smokeryes                             0.3277     0.1286    2.55      0.011 *   
scale(Age, center = TRUE)             0.7165     0.0246   29.11    < 2e-16 *** 
Smokeryes:scale(Age, center = TRUE)  -0.4806     0.0908   -5.29 0.00000016 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.554 on 650 degrees of freedom 
Multiple R-squared:  0.594, Adjusted R-squared:  0.592  
F-statistic:  317 on 3 and 650 DF,  p-value: <2e-16 
car::vif(model4) 
                          Smoker        scale(Age, center = TRUE)  
                           3.159                            1.290  
Smoker:scale(Age, center = TRUE)  
                           3.407  

(k) Did we improve the multicollinearity? 
Yes, the FEV values are smaller 

(l) How do we interpret the intercept, coefficient of age, and coefficient of smoker in this 
model? (Hint: Can you make the interaction go away in order to interpret the main 
effect?) 

intercept: nonsmoker at average age for coefficient; coefficient of age is increase in FEV associated 
with one-year increase in age for non-smokers; and coefficient of smoker if comparison of smokers and 
nonsmokers at the average age. 

(m) Did adding the interaction help our unequal variance problem? Could it have? 
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Not a ton, still have some unequal variance across the smokers’ line and across the nonsmokers’ line… 

Notes: 
• Indicator variables change intercepts; Interaction terms change slopes. 
• Always good idea to use graphs to help illustrate an interaction. 
• Centering to remove multicollinearity doesn’t work on all pairs of variables, just “products” 

like quadratic and interaction. 
• When center with interaction, the interpretation of the “main effect” is about the change in 

response when the other variable is at its mean (to “zero out” the interaction). 

Example 2: Beach data revisited 

Recall our Beach data 
rikzdata<-read.table("http://www.rossmanchance.com/stat414/data/RIKZ.txt",header=T) 
head(rikzdata) 
  Sample Richness Exposure    NAP Beach 
1      1       11       10  0.045     1 
2      2       10       10 -1.036     1 
3      3       13       10 -1.336     1 
4      4       11       10  0.616     1 
5      5       10       10 -0.684     1 
6      6        8        8  1.190     2 
rikzdata$Beach = factor(rikzdata$Beach) 
 
library(lme4) 
model1 = lmer(Richness ~ NAP + (1 | Beach), data  = rikzdata) 
summary(model1, corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: Richness ~ NAP + (1 | Beach) 
   Data: rikzdata 
 
REML criterion at convergence: 239.5 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.423 -0.485 -0.158  0.252  3.979  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Beach    (Intercept) 8.67     2.94     
 Residual             9.36     3.06     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    6.582      1.096    6.01 
NAP           -2.568      0.495   -5.19 

We started with a random intercepts model including NAP. 
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Level 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝑢0𝑗 and 𝑢0𝑗 ∼ 𝑁(0, 𝜏0
2) 

preds = predict(model1, type = "response") 
rikzdata$predictions <- preds 
ggplot(rikzdata, aes(x = NAP, y = Richness)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  geom_line(aes(y= predictions), color = "red") + 
  facet_wrap(~Beach) +  
  theme_bw() + 
  geom_abline(intercept = fixef(model1)[[1]], slope=fixef(model1)[[2]]) 

 
plot(model1, col=rikzdata$Beach) 

 
#plot(residuals(model1) ~ fitted.values(model1), col=rikzdata$Beach) 
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But we saw a possible pattern in the residual plots which suggested we might not want to have 
the same slope for every beach. In other words, we want an interaction between NAP and 
Beach… 

To allow the slopes to vary across the Level 2 units in the model equation, we add a 𝑗 index to 
the slope too. 

(a) Write out the level 2 equation for these slopes. 

𝛽1𝑗 = 𝛽10 + 𝑢1𝑗 

(b) What assumption do we want to make about the distribution of the random slopes 
(effects)? 

The 𝑢1𝑗 are normally distributed with mean 0 and variable $ au_1^2$ 

(c) Now create the composite equation. 

𝑦𝑖𝑗 = 𝛽00 + 𝛽10𝑁𝐴𝑃𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 

(d) Give the expression for beach j’s intercept. Give the expression for beach j’s slope. 

intercept: 𝛽0𝑗 = 𝛽00 + 𝑢0𝑗. slope: 𝛽1𝑗 = 𝛽10 + 𝑢1𝑗 

Fit the random slopes (or “random coefficients”) model, allowing the slopes to vary across the 
beaches: 

model2 = lmer(Richness ~ NAP + (1 + NAP | Beach), data = rikzdata, REML = FALSE) 
# you get a warning (not an error) and can ignore it 
summary(model2) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP + (1 + NAP | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    246.7     257.5    -117.3     234.7        39  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.798 -0.342 -0.183  0.175  3.139  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
 Beach    (Intercept) 10.95    3.31           
          NAP          2.50    1.58     -1.00 
 Residual              7.17    2.68           
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
            Estimate Std. Error t value 
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(Intercept)    6.582      1.188    5.54 
NAP           -2.829      0.685   -4.13 
 
Correlation of Fixed Effects: 
    (Intr) 
NAP -0.810 
optimizer (nloptwrap) convergence code: 0 (OK) 
boundary (singular) fit: see help('isSingular') 
#Our predicted model 
preds = predict(model2, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_abline(intercept = 6.58, slope = -2.83) + 
geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) + 
  theme_bw() 

 

(e) How many parameters does this add to the model? (What if beach was a fixed 
effect?) What do these new parameter estimate(s) tell you? 

Adds 2 parameters to the model (still better than adding 8 interaction terms). One is the population 
variance of the slopes, 𝜏1

2, another is the covariance (or correlation) between the slopes and the 
intercepts. 

fixef(model2) 
(Intercept)         NAP  
      6.582      -2.829  
ranef(model2) 
$Beach 
  (Intercept)     NAP 
1      1.7986 -0.8598 
2      5.6926 -2.7212 
3     -2.7427  1.3111 
4     -2.9682  1.4189 
5      4.5045 -2.1532 



Fall, 2025  Wednesday, Oct. 29 

6     -2.1372  1.0216 
7     -2.4399  1.1663 
8     -1.4646  0.7001 
9     -0.2431  0.1162 
 
with conditional variances for "Beach"  

(f) Find the estimated equations for Beach 1 and Beach 5. Do they differ as we expected 
based on our visual inspections of the data? 
Beach 1 = 6.58 + 1.80 + (-2.83 - 0.86) NAP and Beach 5 = 6.58 + 4.5 + (-2.83 - 2.15), a much larger 
intercept and a much steeper slope than Beach 1, consistent with what we saw when we fit the 
individual regression lines. 

(g) Are the differences in the slopes (collectively) statistically significant? (State 
hypotheses, df, test statistic, p-value, conclusion in context.) 

#do something here 

𝐻𝑜: 𝜏1
2 = 𝜏01 = 0 vs. 𝐻𝑎: 𝜏

2 > 0, the test statistic is 𝜒2 = 7.17 with df = 2. The p-value = 0.0277. The 
variation in the slopes from beach to beach is statistically significant, this would suggest keeping the 
random slopes in the model. 

(h) Does your analysis in the previous question agree with the following output? 

confint(model2) 
              2.5 % 97.5 % 
.sig01       1.9594  6.017 
.sig02      -1.0000  1.000 
.sig03       0.4424  3.399 
.sigma       2.0684  3.442 
(Intercept)  3.9711  9.179 
NAP         -4.4095 -1.356 

Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was 
about 1.5) 

(i) Using our assumption, about the normal distribution of the population of slopes, 
between what two values do we expect 95% of the slopes to fall? 

Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was 
about 1.5) 

(j) What’s the difference between the intervals in (h) and (i)? 

The confidence interval is trying to capture the population value of $ au$ by accounting for the margin 
of error from random sampling variability. The second interval is genearlizing from the beaches in our 
sample to the larger population of beaches and what the largest and smallest values of ‘beach mean 
slope + random effect’ might plausibly be based on the estimated beach to beach variation in the 
slopes. 
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What does it mean for the intercepts and slopes to be correlated? 
#ranef(model2)$Beach[,1] extracts the estimated random intercepts and ranef(model2)
$Beach[,2] extracts the estimated random slopes 
 
#this plots the "effects" (intercepts vs. slopes) 
plot(ranef(model2)$Beach[,2]~ranef(model2)$Beach[,1], ylab = "slope effects", xlab=
"intercept effects") 
abline(lm(ranef(model2)$Beach[,2]~ ranef(model2)$Beach[,1])) 

 
#this plots the resulting slopes and intercepts 
slopes= fixef(model2)[[2]]+ranef(model2)$Beach[,2] 
intercepts = fixef(model2)[[1]]+ranef(model2)$Beach[,1] 
plot(slopes ~ intercepts, xlab = "intercepts", ylab="slopes") 
abline(lm(slopes~intercepts)) 

 

(k) What is the difference between the two graphs we created? How can you tell? What 
do the graphs tell you (in context). 
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Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was 
about 1.5). Bottom line, we learn that beaches with higher intercepts (above average richness for 
average NAP) tend to have below average = more negative (steeper) slopes (larger impact of NAP on 
richness). If a beach tends to be lower in Richness overall, the ‘effect’ of NAP is smaller. 

Computer Problem 11: Due noon on Friday 

You are encoruaged to work with a partner and turn in one write-up with both names. 

Recall we turned Exposure into a binary variable for high vs. low exposure (an index 
composed of the following elements: wave action, length of the surf zone, slope, grain size, 
and the depth of the anaerobic layer). 

rikzdata$ExposureCat = factor(rikzdata$Exposure > 10, 
                              levels=c(FALSE, TRUE), 
                              labels=c("<=10", ">10") 
) 

Let’s consider adding Exposure to our model. Explore whether exposure is related to the 
intercepts and/or the slopes. 
BeachExposureCat = tapply(as.numeric(rikzdata$ExposureCat), rikzdata$Beach, mean) 
plot(slopes ~ BeachExposureCat); abline(lm(slopes~BeachExposureCat)) 

 
plot(intercepts ~ BeachExposureCat); abline(lm(intercepts~BeachExposureCat)) 
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(a) Is Exposure “positively” or “negatively” related to the intercepts? How about the 
slopes? (Interpret the natures of these associations in context.) 

Add ExposureCat to the model 

par(mfrow=c(1,3)) 
 
model3 = lmer(Richness ~ NAP + ExposureCat + (1 + NAP | Beach), data  = rikzdata,  
REML=FALSE) 
summary(model3) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP + ExposureCat + (1 + NAP | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    245.3     258.0    -115.7     231.3        38  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.928 -0.437 -0.107  0.261  2.974  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
 Beach    (Intercept) 5.37     2.32           
          NAP         2.68     1.64     -0.84 
 Residual             6.76     2.60           
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
               Estimate Std. Error t value 
(Intercept)       8.192      1.057    7.75 
NAP              -2.852      0.693   -4.11 
ExposureCat>10   -3.324      1.280   -2.60 
 
Correlation of Fixed Effects: 
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            (Intr) NAP    
NAP         -0.571        
ExposrCt>10 -0.542 -0.025 
preds = predict(model3, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_abline(intercept = 8.19, slope = -2.85) + 
geom_abline(intercept = 8.19 - 3.32, slope = -2.85) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
  theme_bw() 

 
texreg::screenreg(list(model2, model3), digits = 3, single.row = TRUE, stars = 0, 
custom.model.names = c("no exposure", "exposure"), custom.note = "") 
 
============================================================== 
                            no exposure       exposure         
-------------------------------------------------------------- 
(Intercept)                    6.582 (1.188)     8.192 (1.057) 
NAP                           -2.829 (0.685)    -2.852 (0.693) 
ExposureCat>10                                  -3.324 (1.280) 
-------------------------------------------------------------- 
AIC                          246.656           245.335         
BIC                          257.496           257.982         
Log Likelihood              -117.328          -115.668         
Num. obs.                     45                45             
Num. groups: Beach             9                 9             
Var: Beach (Intercept)        10.949             5.371         
Var: Beach NAP                 2.502             2.681         
Cov: Beach (Intercept) NAP    -5.234            -3.203         
Var: Residual                  7.174             6.756         
============================================================== 
anova(model2, model3) 
Data: rikzdata 
Models: 
model2: Richness ~ NAP + (1 + NAP | Beach) 
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model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model2    6 247 258   -117       235                       
model3    7 245 258   -116       231  3.32  1      0.068 . 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(b) Did adding exposure explain variation in the intercepts? in the slopes? in the within 
beach residuals? 

Add the interaction to the model 

model4 = lmer(Richness ~ NAP*ExposureCat + (1 + NAP | Beach), data  = rikzdata,  RE
ML=FALSE)  #with interaction 
summary(model4, corr = F) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Richness ~ NAP * ExposureCat + (1 + NAP | Beach) 
   Data: rikzdata 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    243.2     257.7    -113.6     227.2        37  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.757 -0.455 -0.158  0.251  3.200  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
 Beach    (Intercept) 3.83     1.96           
          NAP         1.00     1.00     -1.00 
 Residual             7.16     2.68           
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
                   Estimate Std. Error t value 
(Intercept)           8.959      1.047    8.55 
NAP                  -3.881      0.723   -5.37 
ExposureCat>10       -5.382      1.586   -3.39 
NAP:ExposureCat>10    2.446      1.099    2.23 
optimizer (nloptwrap) convergence code: 0 (OK) 
boundary (singular) fit: see help('isSingular') 

How do we create the graph now? 
preds = predict(model4, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat)) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_abline(intercept = 8.96, slope = -3.88) + 
geom_abline(intercept = 8.96 - 5.38, slope = -3.88 + 2.45) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
  theme_bw() 
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texreg::screenreg(list(model3, model4), digits = 3, single.row = TRUE, stars = 0, 
custom.model.names = c("exposure", "interaction"), custom.note = "") 
 
============================================================== 
                            exposure          interaction      
-------------------------------------------------------------- 
(Intercept)                    8.192 (1.057)     8.959 (1.047) 
NAP                           -2.852 (0.693)    -3.881 (0.723) 
ExposureCat>10                -3.324 (1.280)    -5.382 (1.586) 
NAP:ExposureCat>10                               2.446 (1.099) 
-------------------------------------------------------------- 
AIC                          245.335           243.221         
BIC                          257.982           257.674         
Log Likelihood              -115.668          -113.611         
Num. obs.                     45                45             
Num. groups: Beach             9                 9             
Var: Beach (Intercept)         5.371             3.832         
Var: Beach NAP                 2.681             1.002         
Cov: Beach (Intercept) NAP    -3.203            -1.959         
Var: Residual                  6.756             7.161         
============================================================== 
anova(model3, model4) 
Data: rikzdata 
Models: 
model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach) 
model4: Richness ~ NAP * ExposureCat + (1 + NAP | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model3    7 245 258   -116       231                       
model4    8 243 258   -114       227  4.11  1      0.043 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(c) Describe the nature of the interaction between NAP and Exposure. (whether or not 
it’s significant.) 
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(d) Did adding exposure explain variation in the intercepts? in the slopes? How do you 
interpret the residual variance increasing?  

Compare the following two models 
model5 = lmer(Richness ~ NAP + (1 + NAP | Beach), data = rikzdata, REML=FALSE) 
preds5 = predict(model5, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds5 , group = Beach, color = Beach )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) + 
theme_bw() 

 
model6 = lmer(Richness ~ NAP + ExposureCat + (1| Beach), data = rikzdata, REML=FALS
E) 
preds6 = predict(model6, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds6 , group = Beach, color = ExposureCat )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
theme_bw() 
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texreg::screenreg(list(model5, model6), digits = 3, single.row = TRUE, stars = 0, 
custom.model.names = c("model5", "model6"), custom.note = "") 
 
============================================================== 
                            model5            model6           
-------------------------------------------------------------- 
(Intercept)                    6.582 (1.188)     8.608 (0.932) 
NAP                           -2.829 (0.685)    -2.604 (0.479) 
ExposureCat>10                                  -4.530 (1.383) 
-------------------------------------------------------------- 
AIC                          246.656           244.759         
BIC                          257.496           253.792         
Log Likelihood              -117.328          -117.379         
Num. obs.                     45                45             
Num. groups: Beach             9                 9             
Var: Beach (Intercept)        10.949             2.419         
Var: Beach NAP                 2.502                           
Cov: Beach (Intercept) NAP    -5.234                           
Var: Residual                  7.174             9.117         
============================================================== 
anova(model2, model3, model4) 
Data: rikzdata 
Models: 
model2: Richness ~ NAP + (1 + NAP | Beach) 
model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach) 
model4: Richness ~ NAP * ExposureCat + (1 + NAP | Beach) 
       npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)   
model2    6 247 258   -117       235                       
model3    7 245 258   -116       231  3.32  1      0.068 . 
model4    8 243 258   -114       227  4.11  1      0.043 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(e) Write a few sentences explaining the differences in these two models, what are they 
assuming/how they are modelling the data. Which model would you recommend and 
why? (You should consider issues like model fit, parsimony) 

Notes 
• In a random slopes model, be careful with the interpretation of the intercept variance and 

the intercept-by-slope covariance, they assume 𝑥 = 0. Another reason why its always 

good practice to center your explanatory variables so the intercept is meaningful. 
• You can use Likelihood-ratio tests to assess whether the random slopes model is “worth 

pursuing statistically.” As you can see, randomly slopes can improve the complexity of the 
model pretty quickly, so you should have empirical, or better yet theoretical, reasons for 
doing so. 


