Fall, 2025 Wednesday, Oct. 29

Stat 414 - Day 11

Interactions

+  Splitting the “composite equation” into “level equations”

* Adding Level 1 and Level 2 variables into the multilevel model and seeing what Level 1
and/or Level 2 (and total) variance is explained.

*  Visualizing fitted models

Example 1: Forced Expiratory Volume (FEV)

Data were collected on 654 youths in the area of East Boston during the middle to late 1970s.
The youth in the study were of ages 3 to 19 years, an age period during which much physical
development, such as increase in lung capacity, takes place. The objective was to analyze the
relationship between smoking status, and forced expiratory volume (FEV, measured in liters).
(FEV is a measure of strength of a person’s lungs — the maximum volume of air a person can
blow out in the first second; higher numbers are better/healthier lungs)
FEVdata = read.table("https://www.rossmanchance.com/stat414F20/data/FEV.txt", heade
r=TRUE)
contrasts(factor(FEVdata$Smoker)) #see how R will code the variable

yes
no 0
yes 1
#FEVdatagSmoker = factor(FEVdatagSmoker)
#contrasts(FEVdatagSmoker) <- contr.sum(levels(FEVdata$Smoker))
# effect coding
#contrasts(FEVdatagSmoker)
modell <- 1m(FEV ~ Smoker, data = FEVdata)

summary (modell)
Call:
Im(formula = FEV ~ Smoker, data = FEVdata)
Residuals:
Min 1Q Median 3Q Max

-1.775 -0.634 -0.102 0.480 3.227

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.5661 0.0347 74.04 <2e-16 ***
Smokeryes 0.7107 0.1099 6.46 2e-10 ***
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

Residual standard error: 0.841 on 652 degrees of freedom
Multiple R-squared: ©.0602, Adjusted R-squared: ©.0588
F-statistic: 41.8 on 1 and 652 DF, p-value: 1.99e-10
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par(mfrow=c(2,2))

plot(modell)
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par(mfrow=c(1,1))

(a) Interpret the coefficient of smoker in this model. Statistically significant? Any
problems with the model?

On average, nonsmokers have 0.71 liters lower FEV than smokers, with a very small p-value so
statistically significant (t = 6.464), though we do see some evidence of unequal variance in FEV values

between the smokers and non-smokers

Add Age to the model

model2 <- 1lm(FEV ~ Smoker + Age, data = FEVdata)
summary (model2)
Call:
Im(formula = FEV ~ Smoker + Age, data = FEVdata)
Residuals:

Min 1Q Median 3Q Max

-1.6653 -0.3564 -0.0508 0.3495 2.0894

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.36737 0.08144 4.51 0.0000076 ***
Smokeryes -0.20899 0.08075 -2.59 0.0099 **
Age 0.23060 0.00818 28.18 < 2e-16 ***

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

Residual standard error: 0.565 on 651 degrees of freedom
Multiple R-squared: ©.577, Adjusted R-squared: ©.575
F-statistic: 443 on 2 and 651 DF, p-value: <2e-16
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rep("yes", 654))
rep("no", 654))

newxl = data.frame(Age = FEVdata$Age, Smoker
newx2 = data.frame(Age = FEVdata$Age, Smoker
fitsl=predict(model2, newxl)
fits2=predict(model2, newx2)

#may need to copy these into Session window/run them as a set
#plot (FEVdata$FEV ~ FEVdata$Age, col=as.factor(FEVdatagSmoker))
#lines (FEVdata$Age, fitsl, col=1)

#lines (FEVdata$Age, fits2, col=2)

#or, with tidyverse

ggplot(FEVdata, aes(x=Age,y=FEV, color= Smoker))+
geom_point()+
geom_line(aes(y=predict(model2))) +

theme_bw()
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par(mfrow=c(1,1))
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(b) How do we interpret the intercept, coefficient of smoker, and coefficient of age in
this model? Any problems with the model?

Intercept: predicted FEV for nonsmoker at 0 years of age; Smoker: comparing smokers and non-
smokers of the same age, the smokers have a predicted FEV .209 liters lower than nonsmokers.
Comparing smokers to smokers or non-smokers to non-smokers, each one-year increase in age is
associated with a 0.231 liter increase in FEV. Variability in residuals appears to increase with age.

Including the binary variable allows the intercepts to differ, but we are still assuming the
slopes are the same.

Produce a graph to decide whether there is evidence that the relationship between FEV and
age differs for the smokers and nonsmokers.

#coplot(FEV ~ Age | Smoker, data = FEVdata,

# panel = function(x,y,...) {

# panel.smooth(x,y)

# abline(lm(y ~ x), col="blue")
# }

# )

#or

FEVdata |>

ggplot(aes(x = Age, y = FEV)) +

geom_point()+

facet_wrap(~Smoker) +

geom_smooth(method = "1m", se=FALSE, color="black", formula =y ~ x) +
labs(title = "FEV vs. Age for non-smokers and smokers") +
theme_bw()
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(c) What do you learn?

The rate of growth with age is larger for the nonsmokers compared to the smokers.
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A quantitative variable and a categorical variable interact if the slopes of the regression lines
differ. (After all, it's the slope that tells us about the association between the two variables, so
this says the association between the response and the quantitative variable depends on the
category of the categorical variable.) To include an interaction between x; and x, in the model,
we literally multiply x; and x, together and add this variable to the model.

(d) What does it mean to multiply Smoker and Age (one categorical and one quantitative
variable) together?

but the categorical variable has been coded numerically so we can literally multiply the columns.

Add the interaction to the model

#You can make R do the multiplication for you by including Smoker:Age with a colon
to signify an 1interaction

model3 = 1lm(FEV ~ Smoker + Age + Smoker:Age, data = FEVdata)

#or

model3 = 1lm(FEV ~ Smoker*Age, data = FEVdata)

#notice the possible short-cut here, the * means include all 3 terms

summary (model3)

Call:
Im(formula = FEV ~ Smoker * Age, data = FEVdata)

Residuals:
Min 1Q Median 3Q Max
-1.7664 -0.3495 -0.0336 ©0.3368 2.0599

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 0.25340 0.08265 3.07 0.0023 **
Smokeryes 1.94357 0.41428 4.69 0.00000331 ***
Age 0.24256 0.00833 29.11 < 2e-16 ***

Smokeryes:Age -0.16270 0.03074 -5.29 0.00000016 ***

Signif. codes: © '***' @9.001 '**' ©0.01 '*' @.05 '.' 0.1 ' ' 1

Residual standard error: 0.554 on 650 degrees of freedom
Multiple R-squared: ©.594, Adjusted R-squared: ©.592
F-statistic: 317 on 3 and 650 DF, p-value: <2e-16

(e) Write out the full equation and then write out the equation (FEV vs. age) for the
smokers and the non-smokers.

Predicted FEV = 0.25 + 1.94 smoker.yes + 0.242 age - 0.163 smoker.yes*age;
Nonsmokers: -.243 + 0.243 age;

Smokers = (0.25 + 1.94) + (.243 - .153) age

(f) How do we interpret the intercept? How do we interpret the coefficient of Age?

0.25 is predicted FEV for non smoker at age zero. 0.242 is coefficient of age for nonsmokers.
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(g) What does the sign of the interaction term tell you? (Note: Another way to interpret
this interaction - what is the slope of age in the full equation?)

Negative so the coefficient of age gets lower when smoker changes from 0 (nonsmoker) to 1 (smoker)

ggplot(FEVdata, aes(x=Age,y=FEV, color= Smoker))+geom_point()+
geom_line(aes(y=predict(model3))) +
labs(title = "FEV vs. Age with interaction") +
theme_bw()
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(h) Is this model valid?
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(i) Are you surprised there is some multicollinearity? What could we do about it?
We are not surprised because the 'smoker*age’ variable is just a subset of the ages in the age variable.
Because this is a ‘product term’ centering the quantitative variable might help!
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Because an interaction is a “product,” centering the quantitative variable might help with the
multicollinearity.

#Manually centering the age variable
Age.c = FEVdata$Age - mean(FEVdata$Age)
model4 = 1lm(FEV ~ Smoker*Age.c, data = FEVdata)

# or
model4 = 1lm(FEV ~ Smoker*scale(Age, center=TRUE), data = FEVdata)

summary (model4)

Call:
Im(formula = FEV ~ Smoker * scale(Age, center = TRUE), data = FEVdata)

Residuals:
Min 1Q Median 3Q Max
-1.7664 -0.3495 -0.0336 ©0.3368 2.0599

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.6623 0.0231 115.49 < 2e-16 **x*
Smokeryes 0.3277 0.1286 2.55 0.011 *
scale(Age, center = TRUE) 0.7165 0.0246 29.11 < 2e-16 ***
Smokeryes:scale(Age, center = TRUE) -0.4806 0.0908 -5.29 0.00000016 ***
Signif. codes: © '***' 9,001 '**' 9.01 '*' @.05 '.' 0.1 ' ' 1

Residual standard error: ©.554 on 650 degrees of freedom
Multiple R-squared: ©.594, Adjusted R-squared: ©.592
F-statistic: 317 on 3 and 650 DF, p-value: <2e-16
car::vif(model4d)

Smoker scale(Age, center = TRUE)

3.159 1.290
Smoker:scale(Age, center = TRUE)
3.407

(k) Did we improve the multicollinearity?
Yes, the FEV values are smaller

(1) How do we interpret the intercept, coefficient of age, and coefficient of smoker in this
model? (Hint: Can you make the interaction go away in order to interpret the main
effect?)

intercept: nonsmoker at average age for coefficient; coefficient of age is increase in FEV associated
with one-year increase in age for non-smokers; and coefficient of smoker if comparison of smokers and
nonsmokers at the average age.

(m) Did adding the interaction help our unequal variance problem? Could it have?
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Not a ton, still have some unequal variance across the smokers’ line and across the nonsmokers’ line...

Notes:

* Indicator variables change intercepts; Interaction terms change slopes.
* Always good idea to use graphs to help illustrate an interaction.
+  Centering to remove multicollinearity doesn’t work on all pairs of variables, just “products”

like quadratic and interaction.

«  When center with interaction, the interpretation of the “main effect” is about the change in
response when the other variable is at its mean (to “zero out” the interaction).

Example 2: Beach data revisited

Recall our Beach data

rikzdata<-read.table("http://www.rossmanchance.com/stat414/data/RIKZ.txt" ,header=T)

head(rikzdata)

Sample Richness Exposure NAP Beach
1 1 11 10 0.045 1
2 2 10 10 -1.036 1
3 3 13 10 -1.336 1
4 4 11 10 0.616 1
5 5 10 10 -0.684 1
6 6 8 8 1.190 2
rikzdata$Beach = factor(rikzdata$Beach)

library(1lme4)
modell = 1lmer(Richness ~ NAP + (1 | Beach), data
summary(modell, corr=F)
Linear mixed model fit by REML ['lmerMod']
Formula: Richness ~ NAP + (1 | Beach)

Data: rikzdata

REML criterion at convergence: 239.5
Scaled residuals:

Min 1Q Median 3Q Max
-1.423 -0.485 -0.158 ©0.252 3.979

Random effects:

Groups  Name Variance Std.Dev.
Beach (Intercept) 8.67 2.94
Residual 9.36 3.06

Number of obs: 45, groups: Beach, 9

Fixed effects:

Estimate Std. Error t value
(Intercept) 6.582 1.096 6.01
NAP -2.568 0.495 -5.19

= rikzdata)

We started with a random intercepts model including NAP.
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Level 1: yl] = ,80] + ,BleAPU + Eij
Level 2 BO] = BOO + uoj and uoj ~ N(O,Tg

preds = predict(modell, type = "response")
rikzdata$predictions <- preds
ggplot(rikzdata, aes(x = NAP, y = Richness)) +
geom_point() +
geom_smooth(method="1m", se=FALSE) +
geom_line(aes(y= predictions), color = "red") +
facet_wrap(~Beach) +
theme_bw() +
geom_abline(intercept = fixef(modell)[[1]], slope=fixef(modell)[[2]])
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#plot(residuals(modell) ~ fitted.values(modell), col=rikzdata$Beach)
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But we saw a possible pattern in the residual plots which suggested we might not want to have
the same slope for every beach. In other words, we want an interaction between NAP and
Beach...

To allow the slopes to vary across the Level 2 units in the model equation, we add a j index to
the slope too.

(a) Write out the level 2 equation for these slopes.
Blj = Pro + Uqj

(b) What assumption do we want to make about the distribution of the random slopes
(effects)?

The uyj are normally distributed with mean 0 and variable $ au_172$

(c) Now create the composite equation.

Yij = Boo + B1oNAP;; + ugj + us jNAP;; + €
(d) Give the expression for beach j’s intercept. Give the expression for beach j’s slope.
intercept: By; = Boo + Uoj- slope: B1j = B1o + Uy

Fit the random slopes (or “random coefficients”) model, allowing the slopes to vary across the
beaches:

model2 = lmer(Richness ~ NAP + (1 + NAP | Beach), data = rikzdata, REML = FALSE)
# you get a warning (not an error) and can ignore it
summary (model2)
Linear mixed model fit by maximum likelihood ['lmerMod"']
Formula: Richness ~ NAP + (1 + NAP | Beach)
Data: rikzdata

AIC BIC loglik -2*log(L) df.resid
246.7 257.5 -117.3 234.7 39

Scaled residuals:
Min 1Q Median 3Q Max
-1.798 -0.342 -0.183 ©0.175 3.139

Random effects:

Groups  Name Variance Std.Dev. Corr
Beach (Intercept) 10.95 3.31

NAP 2.50 1.58 -1.00
Residual 7.17 2.68

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value
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(Intercept) 6.582 1.188 5.54
NAP -2.829 0.685 -4.13

Correlation of Fixed Effects:
(Intr)
NAP -0.810
optimizer (nloptwrap) convergence code: @ (OK)
boundary (singular) fit: see help('isSingular')
#0ur predicted model
preds = predict(model2, newdata = rikzdata)
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) +
geom_smooth(method = "1lm", alpha = .5, se = FALSE) +
geom_abline(intercept = 6.58, slope = -2.83) +
geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) +
theme_bw()
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(e) How many parameters does this add to the model? (What if beach was a fixed
effect?) What do these new parameter estimate(s) tell you?

Adds 2 parameters to the model (still better than adding 8 interaction terms). One is the population
variance of the slopes, 7%, another is the covariance (or correlation) between the slopes and the
intercepts.

fixef(model2)
(Intercept) NAP
6.582 -2.829
ranef(model2)
$Beach
(Intercept) NAP
1 1.7986 -0.8598
2 5.6926 -2.7212
3 -2.7427 1.3111
4 -2.9682 1.4189
5 4.5045 -2.1532
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-2.1372 1.0216
-2.4399 1.1663
-1.4646 0.7001
-0.2431 0.1162

O 00NN

with conditional variances for "Beach"

(f) Find the estimated equations for Beach 1 and Beach 5. Do they differ as we expected
based on our visual inspections of the data?
Beach 1=6.58 +1.80 + (-2.83 - 0.86) NAP and Beach 5 =6.58 + 4.5 + (-2.83 - 2.15), a much larger

intercept and a much steeper slope than Beach 1, consistent with what we saw when we fit the
individual regression lines.

(g) Are the differences in the slopes (collectively) statistically significant? (State
hypotheses, df, test statistic, p-value, conclusion in context.)

#do something here

H,:t? =15, = 0vs. Hy: 72 > 0, the test statistic is y2 = 7.17 with df = 2. The p-value = 0.0277. The
variation in the slopes from beach to beach is statistically significant, this would suggest keeping the
random slopes in the model.

(h) Does your analysis in the previous question agree with the following output?

confint(model2)

2.5 % 97.5 %
.sigol 1.9594 6.017
.s1go2 -1.0000 1.000
.sigo3 0.4424 3.399
.sigma 2.0684 3.442
(Intercept) 3.9711 9.179
NAP -4.4095 -1.356

Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was
about 1.5)

(i) Using our assumption, about the normal distribution of the population of slopes,
between what two values do we expect 95% of the slopes to fall?

Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was
about 1.5)

(j) What’s the difference between the intervals in (h) and (i)?

The confidence interval is trying to capture the population value of S au$ by accounting for the margin
of error from random sampling variability. The second interval is genearlizing from the beaches in our
sample to the larger population of beaches and what the largest and smallest values of ‘beach mean
slope + random effect’ might plausibly be based on the estimated beach to beach variation in the
slopes.
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What does it mean for the intercepts and slopes to be correlated?
#ranef(model2)$Beach[,1] extracts the estimated random intercepts and ranef(model2)
$Beach[,2] extracts the estimated random slopes

#this plots the "effects" (intercepts vs. slopes)
plot(ranef(model2)$Beach[,2]~ranef(model2)$Beach[,1], ylab = "slope effects", xlab=
"intercept effects")

abline(1lm(ranef(model2)$Beach[,2]~ ranef(model2)$Beach[,1]))
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#this plots the resulting slopes and intercepts
slopes= fixef(model2)[[2]]+ranef(model2)$Beach[, 2]
intercepts = fixef(model2)[[1]]+ranef(model2)$Beach[,1]
plot(slopes ~ intercepts, xlab = "intercepts", ylab="slopes")
abline(1lm(slopes~intercepts))
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(k) What is the difference between the two graphs we created? How can you tell? What
do the graphs tell you (in context).
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Yes, the confidence interval for sigma3 (0.44, 3.399) does not contain zero (our point estimate was
about 1.5). Bottom line, we learn that beaches with higher intercepts (above average richness for
average NAP) tend to have below average = more negative (steeper) slopes (larger impact of NAP on
richness). If a beach tends to be lower in Richness overall, the ‘effect’ of NAP is smaller.

Computer Problem 11: Due noon on Friday

You are encoruaged to work with a partner and turn in one write-up with both names.

Recall we turned Exposure into a binary variable for high vs. low exposure (an index
composed of the following elements: wave action, length of the surf zone, slope, grain size,
and the depth of the anaerobic layer).

rikzdata$ExposureCat = factor(rikzdata$Exposure > 10,
levels=c(FALSE, TRUE),
labels=c("<=10", ">10")

)

Let’s consider adding Exposure to our model. Explore whether exposure is related to the
intercepts and/or the slopes.

BeachExposureCat = tapply(as.numeric(rikzdata$ExposureCat), rikzdata$Beach, mean)
plot(slopes ~ BeachExposureCat); abline(lm(slopes~BeachExposureCat))
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plot(intercepts ~ BeachExposureCat); abline(lm(intercepts~BeachExposureCat))
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(a) Is Exposure “positively” or “negatively” related to the intercepts? How about the
slopes? (Interpret the natures of these associations in context.)

Add ExposureCat to the model

par(mfrow=c(1,3))

model3 = 1lmer(Richness ~ NAP + ExposureCat + (1 + NAP | Beach), data = rikzdata,
REML=FALSE)
summary (model3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Richness ~ NAP + ExposureCat + (1 + NAP | Beach)
Data: rikzdata

AIC BIC loglik -2*log(L) df.resid
245.3 258.0 -115.7 231.3 38

Scaled residuals:
Min 1Q Median 3Q Max
-1.928 -0.437 -0.107 ©0.261 2.974

Random effects:

Groups  Name Variance Std.Dev. Corr
Beach (Intercept) 5.37 2.32

NAP 2.68 1.64 -0.84
Residual 6.76 2.60

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.192 1.057 7.75
NAP -2.852 0.693 -4.11
ExposureCat>10 -3.324 1.280 -2.60

Correlation of Fixed Effects:
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(Intr) NAP
NAP -0.571
ExposrCt>10 -0.542 -0.025
preds = predict(model3, newdata = rikzdata)
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat )) +
geom_smooth(method = "1lm", alpha = .5, se = FALSE) +
geom_abline(intercept = 8.19, slope = -2.85) +
geom_abline(intercept = 8.19 - 3.32, slope = -2.85) +
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) +
theme_bw()

207

157 ExposureCat
L1A]
]
oo ==10
L 10

—— =10
E_ _"‘--\—-__:‘—'-—-
0- —

-1 0 1
NAP

texreg::screenreg(list(model2, model3), digits = 3, single.row
custom.model.names = c("no exposure", "exposure"), custom.note

M o

TRUE, stars = 0,
llll)

no exposure exposure
(Intercept) 6.582 (1.188) 8.192 (1.057)
NAP -2.829 (0.685) -2.852 (0.693)
ExposureCat>10 -3.324 (1.280)
AIC 246.656 245.335

BIC 257.496 257.982

Log Likelihood -117.328 -115.668

Num. obs. 45 45

Num. groups: Beach 9 9

Var: Beach (Intercept) 10.949 5.371

Var: Beach NAP 2.502 2.681

Cov: Beach (Intercept) NAP -5.234 -3.203

Var: Residual 7.174 6.756

anova(model2, model3)

Data: rikzdata

Models:

model2: Richness ~ NAP + (1 + NAP | Beach)
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model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

model2 6 247 258 -117 235
model3 7 245 258 -116 231 3.32 1 0.068 .
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

(b) Did adding exposure explain variation in the intercepts? in the slopes? in the within
beach residuals?

Add the interaction to the model

model4 = 1lmer(Richness ~ NAP*ExposureCat + (1 + NAP | Beach), data = rikzdata, RE
ML=FALSE) #with interaction
summary(model4, corr = F)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Richness ~ NAP * ExposureCat + (1 + NAP | Beach)
Data: rikzdata

AIC BIC loglLik -2*log(L) df.resid
243.2 257.7 -113.6 227.2 37

Scaled residuals:
Min 1Q Median 3Q Max
-1.757 -0.455 -0.158 ©0.251 3.200

Random effects:

Groups  Name Variance Std.Dev. Corr
Beach (Intercept) 3.83 1.96

NAP 1.00 1.00 -1.00
Residual 7.16 2.68

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.959 1.047 8.55
NAP -3.881 0.723 -5.37
ExposureCat>10 -5.382 1.586 -3.39
NAP :ExposureCat>10 2.446 1.099 2.23

optimizer (nloptwrap) convergence code: © (OK)
boundary (singular) fit: see help('isSingular')

How do we create the graph now?

preds = predict(model4, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = ExposureCat)) +

geom _smooth(method = "1m", alpha = .5, se = FALSE) +

geom _abline(intercept = 8.96, slope = -3.88) +

geom_abline(intercept = 8.96 - 5.38, slope = -3.88 + 2.45) +

geom point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) +
theme_bw()
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texreg::screenreg(list(model3, modeld4), digits = 3, single.row
custom.model.names = c("exposure", "interaction"), custom.note

TRUE, stars = 0,
llll)

exposure interaction

(Intercept) 8.192 (1.057) 8.959 (1.047)
NAP -2.852 (0.693) -3.881 (0.723)
ExposureCat>10 -3.324 (1.280) -5.382 (1.586)
NAP : ExposureCat>10 2.446 (1.099)
AIC 245.335 243.221

BIC 257.982 257.674

Log Likelihood -115.668 -113.611

Num. obs. 45 45

Num. groups: Beach 9 9

Var: Beach (Intercept) 5.371 3.832

Var: Beach NAP 2.681 1.002

Cov: Beach (Intercept) NAP -3.203 -1.959

Var: Residual 6.756 7.161

anova(model3, model4d)

Data: rikzdata

Models:

model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach)

model4: Richness ~ NAP * ExposureCat + (1 + NAP | Beach)
npar AIC BIC loglLik -2*log(L) Chisq Df Pr(>Chisq)

model3 7 245 258 -116 231
model4 8 243 258 -114 227 4.11 1 0.043 *
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

(c) Describe the nature of the interaction between NAP and Exposure. (whether or not
it’s significant.)
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(d) Did adding exposure explain variation in the intercepts? in the slopes? How do you
interpret the residual variance increasing?

Compare the following two models

model5 = lmer(Richness ~ NAP + (1 + NAP | Beach), data = rikzdata, REML=FALSE)
preds5 = predict(model5, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds5 , group = Beach, color = Beach )) +
geom_smooth(method = "1lm", alpha = .5, se = FALSE) +

geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) +
theme_bw()
Beach
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model6é = lmer(Richness ~ NAP + ExposureCat + (1| Beach), data = rikzdata, REML=FALS
E)

preds6 = predict(model6, newdata = rikzdata)

ggplot(rikzdata, aes(x = NAP , y = preds6 , group = Beach, color = ExposureCat )) +
geom_smooth(method = "1Im", alpha = .5, se = FALSE) +

geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) +
theme_bw()
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texreg::screenreg(list(model5, model6), digits = 3, single.row = TRUE, stars = 0,

custom.model.names = c("model5", "model6"), custom.note = "")
model5 model6

(Intercept) 6.582 (1.188) 8.608 (0.932)

NAP -2.829 (0.685) -2.604 (0.479)

ExposureCat>10 -4.530 (1.383)

AIC 246.656 244.759

BIC 257.496 253.792

Log Likelihood -117.328 -117.379

Num. obs. 45 45

Num. groups: Beach 9 9

Var: Beach (Intercept) 10.949 2.419

Var: Beach NAP 2.502

Cov: Beach (Intercept) NAP -5.234

Var: Residual 7.174 9.117

anova(model2, model3, model4)

Data: rikzdata

Models:

model2: Richness ~ NAP + (1 + NAP | Beach)

model3: Richness ~ NAP + ExposureCat + (1 + NAP | Beach)

model4: Richness ~ NAP * ExposureCat + (1 + NAP | Beach)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

model2 6 247 258 -117 235

model3 7 245 258 -116 231 3.32 1 0.068 .
model4 8 243 258 -114 227 4.11 1 0.043 *
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

(e) Write a few sentences explaining the differences in these two models, what are they
assuming/how they are modelling the data. Which model would you recommend and
why? (You should consider issues like model fit, parsimony)

Notes

* Inarandom slopes model, be careful with the interpretation of the intercept variance and
the intercept-by-slope covariance, they assume x = 0. Another reason why its always
good practice to center your explanatory variables so the intercept is meaningful.

* You can use Likelihood-ratio tests to assess whether the random slopes model is “worth
pursuing statistically.” As you can see, randomly slopes can improve the complexity of the
model pretty quickly, so you should have empirical, or better yet theoretical, reasons for
doing so.



