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Stat 414 - Day 10 
Level 2 variables (Ch. 4) 

Previously 

• Basic multilevel model: 𝑌𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝜖𝑖𝑗 where we are assuming 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) and 𝑢𝑗 ∼

𝑁(0, 𝜏2) and 𝑐𝑜𝑣(𝜖𝑖𝑗, 𝑢𝑗) = 0 

• Assessing whether variance components are statistically significant. In other words, is the 
group mean variation significant, a LRT with df = 1, and describing the “model distribution” 
of the random effects (e.g., the median school). 

• Assessing whether adding variables to the model explains significantly more variation in 
the response including percentage of Level 1 and Level 2 variation explained (and overall) 
and t-test/partial F-test or LRT. 

Example 1: Beach data 

Data were collected from nine beaches along the Dutch coast. Five readings were taken for 
each beach, measuring the species richness (number of different species). 

 

rikzdata<-read.table("http://www.rossmanchance.com/stat414/data/RIKZ.txt",header=T) 
head(rikzdata) 
  Sample Richness Exposure    NAP Beach 
1      1       11       10  0.045     1 
2      2       10       10 -1.036     1 
3      3       13       10 -1.336     1 
4      4       11       10  0.616     1 
5      5       10       10 -0.684     1 
6      6        8        8  1.190     2 
rikzdata$Beach = factor(rikzdata$Beach) 

(a) What are the Level 1 units in this study? How many are there? What are the Level 1 
variables? 
Level 1 units = beach sites (45 total); Level 2 units = beaches (9); Level 1 variable is NAP and Exposure is 
Level 2 variable (doesn’t change across sites, only across beaches). 

Examine the data 
plot(rikzdata) 
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(b) Does Richness vary by beach? Does Richness vary with NAP? Does Richness vary 
with Exposure? Does NAP appear to vary with Exposure? Do the natures of these 
associations make sense in context? Ask ChatGPT? 

There is a negative association between NAP and Richness. Beaches with less exposure appear to have 
more Richness. Beaches with more exposure tend to have higher NAP? That’s important to note as 
they may explain some of the same variation in Richness. 

Probably should have mentioned - also note that the NAP (means) vary across the beaches. 

(c) Using good statistical notation, write out the model equation for the model using 
random intercepts for the beaches. 

𝑌𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝜖𝑖𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) and 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Alternatively, we can write the null model as two “level equations”: 

Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝜖𝑖𝑗 with 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝑢𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) 

Confirm that these equations match the “composite” equation. 

(d) How would you add the NAP variable to the level-model equations? (Which level? 
What indices? what are the parameters in the model?) 

Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 with 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝑢𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) 

Fit the multilevel model that also allows Richness to vary with NAP, after adjusting for beach: 

model1 = lmer(Richness ~  NAP + (1 | Beach), data  = rikzdata)  #Note the 1 + for t
he intercept is assumed! 
summary(model1, corr=F) 
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Linear mixed model fit by REML ['lmerMod'] 
Formula: Richness ~ NAP + (1 | Beach) 
   Data: rikzdata 
 
REML criterion at convergence: 239.5 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.423 -0.485 -0.158  0.252  3.979  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Beach    (Intercept) 8.67     2.94     
 Residual             9.36     3.06     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)    6.582      1.096    6.01 
NAP           -2.568      0.495   -5.19 
#Our predicted model 
#library(tidyverse) 
preds = predict(model1, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds , group = Beach, color = Beach )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_abline(intercept = 6.582, slope = -2.568) + 
geom_point(data = rikzdata, aes(y = Richness, color=Beach), alpha = .5) + 
  theme_bw() 

 
#See also 
library(ggeffects) 
ggpredict(model1, terms = c("NAP", "Beach"), type = "random") |> plot() 
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plot(ggpredict(model1, terms = c("NAP", "Beach"), type = "random"), show_ci=FALSE) 

 
#See also 
library(effects) 
plot(effects::allEffects(model1)) 
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performance::r2(model1, by_group = TRUE) 
# Explained Variance by Level 
 
Level   |    R2 
--------------- 
Level 1 | 0.396 
Beach   | 0.173 

(e) How do you interpret the (“Pseudo-𝑅2”) variance explained output? 

NAP explains 39.6% of the variation in Richness values within beaches and 17.3% of the beach-to-
beach variation in average Richness. A Level 1 variable can explain variability at Level 2 if the Level 1 
variable varies across the Level 2 units. 

At the beach level, there is a weak association between avg Richness and avg NAP for these 
9 beaches: 

group_means <- rikzdata |> 
  group_by(Beach) |>        
  summarise( 
    mean_Richness = mean(Richness, na.rm = TRUE), 
    mean_NAP = mean(NAP, na.rm = TRUE) 
  ) 
 
plot(group_means$mean_Richness~ group_means$mean_NAP) 
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summary(lm(group_means$mean_Richness~ group_means$mean_NAP)) 
 
Call: 
lm(formula = group_means$mean_Richness ~ group_means$mean_NAP) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-4.040 -2.263 -0.855  1.143  6.142  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)              7.44       1.50    4.97   0.0016 ** 
group_means$mean_NAP    -5.04       2.92   -1.73   0.1279    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 3.3 on 7 degrees of freedom 
Multiple R-squared:  0.299, Adjusted R-squared:  0.198  
F-statistic: 2.98 on 1 and 7 DF,  p-value: 0.128 

Probably not worth adding avg NAP to the model. So let’s try a different Level 2 variable. 

Adding a Level 2 variable 

Only one beach has Exposure = 8, so we are going to combine that with Exposure 10 make 
this a binary variable (the rest are Exposure 11). 
rikzdata$ExposureCat = factor(rikzdata$Exposure > 10, 
                              levels=c(FALSE, TRUE), 
                              labels=c("<=10", ">10") 
) 
contrasts(rikzdata$ExposureCat) 
     >10 
<=10   0 
>10    1 



Fall, 2025  Monday, Oct. 27 

Note: I used the contrasts command to see that >10 (high exposure) will be coded 1 and <= 10 
(low exposure) will be coded 0. 

(f) How would you add the Exposure variable to the model equations? (Which level? 
What indices?) 

Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑁𝐴𝑃𝑖𝑗 + 𝜖𝑖𝑗 with 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝛽01𝐸𝑥𝑝𝑗 + 𝛽01𝐸𝑥𝑝𝑗 + 𝑢𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) 

Fit the multilevel model that also allows Richness to vary with NAP and Exposure, after 
adjusting for beach: 

model2 = lmer(Richness ~ NAP + ExposureCat + (1 | Beach), data  = rikzdata) 
summary(model2, corr=F) 
Linear mixed model fit by REML ['lmerMod'] 
Formula: Richness ~ NAP + ExposureCat + (1 | Beach) 
   Data: rikzdata 
 
REML criterion at convergence: 230.6 
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-1.516 -0.482 -0.122  0.292  3.878  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Beach    (Intercept) 3.64     1.91     
 Residual             9.36     3.06     
Number of obs: 45, groups:  Beach, 9 
 
Fixed effects: 
               Estimate Std. Error t value 
(Intercept)       8.601      1.059    8.12 
NAP              -2.582      0.488   -5.29 
ExposureCat>10   -4.533      1.576   -2.88 
#Graph the model 
preds2 = predict(model2, newdata = rikzdata) 
ggplot(rikzdata, aes(x = NAP , y = preds2 , group = Beach, color = ExposureCat )) + 
geom_smooth(method = "lm", alpha = .5, se = FALSE) + 
geom_abline(intercept = 8.6011, slope = -2.5817) + 
  geom_abline(intercept = 8.6011 - 4.532, slope = -2.5817) + 
geom_point(data = rikzdata, aes(y = Richness, color=ExposureCat), alpha = .5) + 
  theme_bw() 
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plot(effects::allEffects(model2)) 

 

(g) Where did the intercept and slope values come from? How do we interpret the slope 
of Exposure? 

The fitted model is 8.6011 - 2.58 NAP - 4.53 highExp. So for low exposure beaches, the equation is 
8.6011 - 2.58 NAP and for high exposure beaches, the equation is 8.6011 - 4.53 (=4.07) - 2.58 NAP. So 
4.53 is the predicted decrease in average Richness moving from low exposure to high exposure 
beaches, after adjusting for NAP and Beach. 

(h) What do you learn from the graphs? Does ExposureCat appear meaningful? Is it 
statistically significant? 

So we have one intercept for low exposure beaches and a lower one for high exposure beaches and 
then random variation of the beaches around these means, all with the same negative association 
(slope) with NAP. Back to the earlier output, we have a t-value of -2.88 so we would probably consider 
that to be a statistically significant change in the average Richness between high and low exposure 
beaches after adjusting for NAP. 
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(i) How does adding the Exposure variable to the model change the variance 
components? How much variation is explained at each level? 

VarCorr(model1) 
 Groups   Name        Std.Dev. 
 Beach    (Intercept) 2.94     
 Residual             3.06     
VarCorr(model2) 
 Groups   Name        Std.Dev. 
 Beach    (Intercept) 1.91     
 Residual             3.06     

The Level 1 variance is unchanged, which we would expect because we added a Level 2 variable. The 
Level 1 variance changed by 2.9442 − 1.09722)/2.9442𝑥100. So Exposure explained 58% of the beach 
to beach variation in Richness (that wasn’t explained by NAP). 

#Just remember this is compared to the null model 
performance::r2(model2, by_group = TRUE) 
# Explained Variance by Level 
 
Level   |    R2 
--------------- 
Level 1 | 0.397 
Beach   | 0.653 

Examine the residuals vs. fits (Model 1): 
rikzdata$preds <- predict(model1) 
ggplot(rikzdata, aes(x = preds, y = residuals(model1), color = Beach)) + 
  geom_point(alpha = 0.7) + 
  geom_hline(yintercept = 0, linetype = "dashed") + 
  theme_bw() + 
  labs(x = "Fitted values", y = "Residuals") 

 

(j) What do the run of positive and negative residuals tells us? 
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We are missing an important variable? For example, for the salmon dots, we are consistently 
underpredicting high NAP values and over predicting low NAP? Allow the slopes to vary by beach? 
Sounds like an interaction… 

Example 2: Netherlands Language Scores 

Recall the Netherlands Language dataset with language test scores (langPOST) for Grade 8 
students (~ age 11). 

Null Model 
neth = read.table("https://www.rossmanchance.com/stat414F20/data/NetherlandsLanguag
e.txt", "\t", header=TRUE) 
head(neth) 
  schoolnr pupilNR_new langPOST    ses IQ_verb sex Minority denomina sch_ses 
1        1           3       46  -4.73    3.13   0        0        1  -14.04 
2        1           4       45 -17.73    2.63   0        1        1  -14.04 
3        1           5       33 -12.73   -2.37   0        0        1  -14.04 
4        1           6       46  -4.73   -0.87   0        0        1  -14.04 
5        1           7       20 -17.73   -3.87   0        0        1  -14.04 
6        1           8       30 -17.73   -2.37   0        1        1  -14.04 
  sch_iqv sch_min 
1  -1.404    0.63 
2  -1.404    0.63 
3  -1.404    0.63 
4  -1.404    0.63 
5  -1.404    0.63 
6  -1.404    0.63 
load(url("https://www.rossmanchance.com/iscam4/ISCAM.RData"))  
 
#library(lme4) 
nullmodel = lmer(langPOST ~ 1 + (1|schoolnr), data = neth, REML = FALSE) 
performance::icc(nullmodel)   
# Intraclass Correlation Coefficient 
 
    Adjusted ICC: 0.224 
  Unadjusted ICC: 0.224 

(a) Was IQ_verb a Level 1 or Level 2 variable? 
IQ_verb is Level 1 

Model 1 
model1 = lmer(langPOST ~ 1 + IQ_verb + (1 | schoolnr), data = neth) 

(b) Write out the by-level model equations 

Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑣𝑒𝑟𝑏𝑎𝑙𝐼𝑄𝑖𝑗 + 𝜖𝑖𝑗 with 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝑢𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) 
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(c) How do you interpret the percentage in variance explained calculations? 

performance::r2(model1, by_group = TRUE) 
# Explained Variance by Level 
 
Level    |    R2 
---------------- 
Level 1  | 0.356 
schoolnr | 0.457 

Adding IQ_verb to the model explained 35.6% of the variation at Level 1 and 45.7% (!) of the variability 
at Level 2 (differences among schools in avg language scores. This happens because IQ_verb also varies 
across the schools. Knowing the average verbal IQ at the school is even more informative than knowing 
a student’s individual IQ in predicting a student’s language score. 

Level 2 association 

We note a very strong positive linear association between average language score and 
average verbal IQ across the 211 schools: 
group_means <- neth |> 
  group_by(schoolnr) |>        
  summarise( 
    mean_lang = mean(langPOST, na.rm = TRUE), 
    mean_IQverb = mean(IQ_verb, na.rm = TRUE) 
  ) 
 
plot(group_means$mean_lang~ group_means$mean_IQverb) 

 
summary(group_means$mean_lang~ group_means$mean_IQverb) 
 Length   Class    Mode  
      3 formula    call  

An important “contextual variable” in this study is the average school IQ. 

(d) In R, how we could create a variable I could use in my model? Ask ChatGPT? 
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One quick way is to use the ‘ave’ function to add associated group mean in each row 

  Code 

neth$mean_IQ  <- with(neth, ave(IQ_verb, schoolnr, FUN = mean)) 
head(neth) 
  schoolnr pupilNR_new langPOST    ses IQ_verb sex Minority denomina sch_ses 
1        1           3       46  -4.73    3.13   0        0        1  -14.04 
2        1           4       45 -17.73    2.63   0        1        1  -14.04 
3        1           5       33 -12.73   -2.37   0        0        1  -14.04 
4        1           6       46  -4.73   -0.87   0        0        1  -14.04 
5        1           7       20 -17.73   -3.87   0        0        1  -14.04 
6        1           8       30 -17.73   -2.37   0        1        1  -14.04 
  sch_iqv sch_min mean_IQ 
1  -1.404    0.63   -1.55 
2  -1.404    0.63   -1.55 
3  -1.404    0.63   -1.55 
4  -1.404    0.63   -1.55 
5  -1.404    0.63   -1.55 
6  -1.404    0.63   -1.55 

(e) Is the school mean verbal IQ related to (average) performance score? 
#There was already a school level variable for verbal IQ (created before missing ob
servations removed) 
plot(neth$langPOST ~ neth$sch_iqv) 

 
There does appear to be a strong positive linear association between student language score and 
school mean IQ verbal. 

(f) How would you add sch_iqv to the Level 1 and Level 2 model equations? 

Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1 × 𝑣𝑒𝑟𝑏𝑎𝑙. 𝐼𝑄𝑖𝑗 + 𝜖𝑖𝑗 with 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) 

Level 2: 𝛽0𝑗 = 𝛽00 + 𝛽01𝑚𝑒𝑎𝑛. 𝑣𝑒𝑟𝑏𝑎𝑙. 𝐼𝑄𝑗 + 𝑢𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) 
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Run the model 
model2 = lmer(langPOST ~ 1 + IQ_verb + sch_iqv + (1 | schoolnr), data = neth, REML 
= F) 
summary(model2, corr = FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: langPOST ~ 1 + IQ_verb + sch_iqv + (1 | schoolnr) 
   Data: neth 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    24898     24929    -12444     24888      3753  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.222 -0.641  0.063  0.706  3.219  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 schoolnr (Intercept)  8.68    2.95     
 Residual             40.43    6.36     
Number of obs: 3758, groups:  schoolnr, 211 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  41.1138     0.2318  177.36 
IQ_verb       2.4536     0.0555   44.22 
sch_iqv       1.3124     0.2616    5.02 
anova(model1, model2) 
Data: neth 
Models: 
model1: langPOST ~ 1 + IQ_verb + (1 | schoolnr) 
model2: langPOST ~ 1 + IQ_verb + sch_iqv + (1 | schoolnr) 
       npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)     
model1    4 24920 24945 -12456     24912                         
model2    5 24898 24929 -12444     24888  24.1  1 0.00000089 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
performance::r2(model2, by_group=TRUE) 
# Explained Variance by Level 
 
Level    |    R2 
---------------- 
Level 1  | 0.357 
schoolnr | 0.521 

(g) Interpret the slope of the sch_iqv variable in this model in context. 
A one unit increase in school IQ verbal is associated with an additional 1.31 increase in averge language 
score, above and beyond the individual effect. Or, it’s the difference between the group effect and the 
individual effect. 
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(h) Based on the output you have, is this new variable a significant addition to the 
model? How are you deciding? 

The t-statistic is 5.017 > 2 (and the likelihood ratio test is significant) so yes. So we learn that the level 2 
slope (in the sample) is significantly larger than the level 1 slope. 

Definitions 

A comparison of the within group and between group associations is essentially the Hausman 
specification test in econometrics. 

(i) How much Level 1 variability did we explain? How much Level 2? 

Compared to the null model, we have explained 35.7% of the variation within schools and 52.1% of the 
variation between schools. 

What if we change to the “deviation” variable, verbal_IQ - sch_iqv? (aka Group Mean 
Centering) 

devIQ = neth$IQ_verb - neth$sch_iqv 
 
model3 = lmer(langPOST ~ 1 + devIQ + sch_iqv + (1 | schoolnr), data = neth, REML = 
F) 
summary(model3, corr = FALSE) 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: langPOST ~ 1 + devIQ + sch_iqv + (1 | schoolnr) 
   Data: neth 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
    24898     24929    -12444     24888      3753  
 
Scaled residuals:  
   Min     1Q Median     3Q    Max  
-4.222 -0.641  0.063  0.706  3.219  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 schoolnr (Intercept)  8.68    2.95     
 Residual             40.43    6.36     
Number of obs: 3758, groups:  schoolnr, 211 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  41.1138     0.2318   177.4 
devIQ         2.4536     0.0555    44.2 
sch_iqv       3.7660     0.2558    14.7 
anova(model1, model3) 
Data: neth 
Models: 
model1: langPOST ~ 1 + IQ_verb + (1 | schoolnr) 
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model3: langPOST ~ 1 + devIQ + sch_iqv + (1 | schoolnr) 
       npar   AIC   BIC logLik -2*log(L) Chisq Df Pr(>Chisq)     
model1    4 24920 24945 -12456     24912                         
model3    5 24898 24929 -12444     24888  24.1  1 0.00000089 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
performance::r2(model3, by_group = TRUE) 
# Explained Variance by Level 
 
Level    |    R2 
---------------- 
Level 1  | 0.357 
schoolnr | 0.521 

(j) Interpret the slope coefficients for this model. 
The slope coefficient of the school mean IQ is the predicted increase (3.766) in mean language IQ, 
holding everyone’s relative position within the school constant. So the within group effect is 2.45 
(predicted increase in language score comparing two students in the same school but one has 1 pt 
higher on verbal IQ) and the between group effect is 3.766. 

(k) Does the deviation variable explain variation at Level 1 and/or Level 2? (Compare 
back to the null model) 

model5 = lmer(langPOST ~ 1 + sch_iqv + (1 | schoolnr), data = neth, REML = F) 
performance::r2(model5, by_group = TRUE) 
# Explained Variance by Level 
 
Level    |    R2 
---------------- 
Level 1  | 0.003 
schoolnr | 0.593 
model6 = lmer(langPOST ~ 1 + devIQ + (1 | schoolnr), data = neth, REML = F) 
performance::r2(model6, by_group = TRUE) 
# Explained Variance by Level 
 
Level    |     R2 
----------------- 
Level 1  |  0.356 
schoolnr | -0.122 
library(stargazer) 
stargazer( model1, model2, model3, type="text") 
 
======================================================= 
                            Dependent variable:         
                    ----------------------------------- 
                                 langPOST               
                        (1)         (2)         (3)     
------------------------------------------------------- 
IQ_verb              2.507***    2.454***               
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                      (0.054)     (0.055)               
                                                        
devIQ                                        2.454***   
                                              (0.055)   
                                                        
sch_iqv                          1.312***    3.766***   
                                  (0.262)     (0.256)   
                                                        
Constant             41.050***   41.110***   41.110***  
                      (0.244)     (0.232)     (0.232)   
                                                        
------------------------------------------------------- 
Observations           3,758       3,758       3,758    
Log Likelihood      -12,459.000 -12,444.000 -12,444.000 
Akaike Inf. Crit.   24,925.000  24,898.000  24,898.000  
Bayesian Inf. Crit. 24,950.000  24,929.000  24,929.000  
======================================================= 
Note:                       *p<0.1; **p<0.05; ***p<0.01 

Notes 
• It’s probably a good idea to grand mean center all explanatory variables before you start 

your analysis. 
• “Group mean centering” (as opposed to grand mean centering) creates a “within” group 

variable. 
• Some recommend calculating group means before observations with missing values are 

deleted (or better yet, use imputation) 
• When using x and x-bar (rather than deviation and x-bar), the coefficient of x-bar is the 

difference between the within and between group effect. The significance of the group 
mean variable is akin to the Hausman specification test in econometrics: Is the difference 
between the “within group” and “between group” effects statistically significant? 

Computer problem 10 

Recall our fake salary data 
saldata <-read.table("https://www.rossmanchance.com/stat414/data/saldata.txt", head
er=T) 
#In the fixed effects model, adjusting for major changed the sign of the semesters 
coefficient 
lm(salary ~ semesters, data = saldata) 
 
Call: 
lm(formula = salary ~ semesters, data = saldata) 
 
Coefficients: 
(Intercept)    semesters   
      34.04         1.16   
lm(salary ~ semesters + major, data = saldata) 
 
Call: 
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lm(formula = salary ~ semesters + major, data = saldata) 
 
Coefficients: 
   (Intercept)       semesters  majorchemistry    majorphysics   
         54.76           -2.17           38.75           19.17   

So let’s think more about what it means to adjust for another variable, but in terms of adjusting 
the relationship between salary and major by number of semesters. 
#Just making sure R uses effect coding and displays the group labels 
saldata$majorC <- factor(saldata$major, 
                    levels = c("business", "chemistry", "physics"), 
                   labels = c("business", "chemistry", "physics")) 
C <- contr.sum(nlevels(saldata$majorC))       
colnames(C) <- levels(saldata$majorC)[1:ncol(C)]   
 
lm(salary ~ majorC, data = saldata,  
   contrasts = list(majorC = C)) 
 
Call: 
lm(formula = salary ~ majorC, data = saldata, contrasts = list(majorC = C)) 
 
Coefficients: 
    (Intercept)   majorCbusiness  majorCchemistry   
          47.96            -9.46             8.42   

(a) Based on the effect-coded coefficients, roughly how are apart are the mean salary 
for chemistry and business majors? 

Now we will bring semesters into the model. Consider this graph. 

ggplot(saldata, aes(x = semesters, y = salary, color = major)) + 
     geom_point(size = 2) + 
     geom_smooth(method = "lm", se = FALSE, fullrange=TRUE) + 
     labs(title = "ANCOVA: Salary vs. Semesters by Major", 
          subtitle = "Adjusting for semesters removes within-major trends", 
          y = "Salary", x = "Semesters") + 
  theme_bw() 
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Verify the difference in means that you just talked about. 

(b) Now pick a number of semesters, say 12, would you say the predicted salary for a 
chemistry major is (closer/further) than the predicted salary for a business major to 
what you found in (a)? Does it matter what value you pick for number of semesters? 

(c) Fit the model with both semesters and majors and discuss whether this supports 
your answer to (b). 

Note: The unadjusted mean for chemistry is 56.375 and the semester-effect for chemistry is 
17.12 - 12.04 = 5.08. The adjusted coefficient for semesters is -2.17. So the semesters-
adjusted mean for chemistry is then 56.375 - (-2.17)*(5.085) = 67.41 (effect = 67.41 - 47.96 = 
19.45). 

Now let’s see how this translates to a multilevel model. For illustration, we will treat major as a 
random effect. 

model0 <- lmer(salary ~ 1 + (1 | major), data = saldata) 
model1 <- lmer(salary ~ semesters + (1 | major), data = saldata) 
 
VarCorr(model0) 
 Groups   Name        Std.Dev. 
 major    (Intercept) 8.81     
 Residual             4.99     
VarCorr(model1) 
 Groups   Name        Std.Dev. 
 major    (Intercept) 19.14    
 Residual              2.93    

(d) How much Level 1 variability is explained by adding the semesters variable? 

(e) How much Level 2 variability is explained by adding the semesters variable? 

(f) Apply what learned in (a)-(c) to explain what is happening in (e). 

Bottom Line: 
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• A Level 1 variable can explain variation at Level 1 or Level 2, but can also increase 
variation at Level 2. 

– If distribution of Level 1 variable is the same across the Level 2 units, Level 2 
variability won’t change (𝑥‾𝑗 not changing, a deviation variable, a percentile variable) 

– If associations agree, then the Level 1 variable will also explain some of the Level 2 
variability 

– If positive association at one level and negative at the other, then can increase 
Level 2 variability 

• Level 2 variables can only explain variation at Level 1 (apart from rounding) 




