Paper presented at the ARTIST Roundtable Conference on Assessment in Statistics held at Lawrence University, August 1-4, 2004

Using Writing to Assess and Improve Student Learning

Norean Radke Sharpe
Associate Professor of Statistics
and Operations Research
Babson College

Agenda

- Background on using writing in statistics
- Background on assessment
- Why use writing?
- How use writing?
- Case study examples

Early Work:

- Radke Sharpe, N. (1991). Writing as a component of statistics education.
- Iversen, G. (1991). Writing papers in a statistics course.
- Smith, C., Miller, D. and Robertson, A. (1992). Using writing assignments in teaching statistics: An empirical study.
- Samsa, G. and Oddone, E. Z. (1994). Integrating scientific writing into a statistics curriculum: A course in statistically based scientific writing

Background on "Writing" (cont.)

Recent Work:

- Coakley, C.W. (1996). Suggestions for your nonparametric statistics course
- Stromberg, A. J. and Ramanathan, S.(1996). Easy implementation of writing in introductory statistics courses
- Radke Sharpe, N. (2000). Curriculum in context: Teaching with case studies in statistics courses
- Spurrier, J.D. (2001). A capstone course for undergraduate statistics majors

Background on "Assessment"

- Gal, I. and Ginsburg, L. (1994). The role of beliefs and attitudes in learning statistics: Towards an assessment framework
- Konold, C. (1995). Issues in assessing conceptual understanding in probability and statistics
- Hubbard, R. (1997). Assessment and the process of learning statistics
- O'Connell, A.A. (2002). Student perceptions of assessment strategies in a multivariate statistics course

Highlighted Work on Assessment

Garfield, J. (1994) Beyond testing and grading: Using assessment to improve student learning

- Summarized trends in assessment
- Observed "mismatch between traditional assessment and desired student outcomes."
- Presented framework for "categorizing and developing appropriate assessment instruments and procedures"

Highlighted Work on Assessment (cont.)

Chance, B. (1997) Experiences with Authentic assessment techniques in an introductory statistics course

- Presented techniques of assessment used in introductory statistics courses
- Used projects, "technical reports" and journals
- Stressed importance of "communication skills"
- Provided essential features of effective assessment techniques

Highlighted Work on Assessment (cont.)

Garfield, J. et al. (2002) First courses in statistical science: The status of educational reform efforts

- Conducted survey of teachers of first statistics course
- Teachers did not mention using "writing," although at least one reported asking students to keep "journals of both statistical problems and reactions to the course."
- Authors recommended the need for "high quality assessments to ..determine how well the 'new' courses are preparing students to think, reason, and communicate, using statistics."

Why do we assess students?

- To evaluate:¹
 - Knowledge of material
 - Independent thinking ability
 - Communication skills
 - <u>Competence</u> (conceptual, computational, and technological)
 - Collaborative skills

¹From: Radke Sharpe, N. (1997) Assignments and Assessment, Invited Talk at *Assessment in Statistics Courses Conference*.

N. Radke Sharpe

ARTIST Workshop, August, 2004

Purposes of Assessment?

- To <u>improve student learning</u> and to provide information to students and instructors on:¹
 - How well students understand topics
 - Students' perceptions and reactions to material
 - Students' success in achieving course goals
 - Students' strengths and weaknesses

¹From: Garfield, J. (1994), Journal of Statistics Education, Vol 2, N. 1

Why use writing?

Reveals student perceptions and understanding of material

Are we achieving course goals?
What are weaknesses?

Questions addressed with writing

- What are student perceptions of concepts?
 - → (e.g., confidence, variability, normalization?)
- What are student strengths?
 - → (e.g., implementation? Selecting appropriate analyses?)
- What are student weaknesses?
 - → (e.g., interpretation? Application to real data?)
- Are we achieving course goals?
 - → (e.g., conceptual learning? collaborative learning? Appreciation of ethical treatment of data?)

What makes a good writing assignment?

Assignments should be:1

- Linked to course objectives
- Sequenced from less complex to more complex
- Well-defined (stating topic, purpose, audience, and deliverable
- Assigned with clear evaluation criteria
- Integrated into context of course
- Structured with progress reports and/or drafts

¹From: Radke Sharpe, N. (1997) Assignments and Assessment, Invited Talk at Assessment in Statistics Courses Conference.

More thoughts on good assignments...

Assignments should:1

- Provide students with timely, constructive, regenerative feedback
- Promote self-reflection and higher-order thinking
- Provide students with guidelines of what is expected
- Be consistent and fair
- Make goals of evaluation clear
- Be well-integrated into the course

¹From: Chance, B. (1997). Journal of Statistics Education, Vol. 5, N. 3.

- Set expectations early
- → Emphasize importance of writing on 1st day
- Assign weekly lab/case reports
- → Begin with week 1 or 2 and be consistent
- Provide clear structure
- → Introduction; Methods; Results; Recommendations
- Provide template of exemplary work
- Give clear/specific feedback
- Repeat Process

Sample Introductory Statistics Outline

				<u> </u>
Week	Topic	Written Assignments	Suggested Cases	
1	Data collection		Decisions in New Product	
			Development (NPD) (A)	
2	Data description/presentation	Written Report #1 due	NPD (B) or Space Shuttle Challeng	ger
3	Categorical data	Written Report #2 due		
4	Probability		NPD(B2) or Drug and Disease Tes	ting
5	Discrete RV's	Written Report #3 due		
6	Normal distribution			
7	Sampling dist's		CLT for Census Data	
8	Estimation: t-dist; Cl's	Written Report #4 due	Risk and Return in World Markets	
9	Hypothesis Testing	Written Report #5 due	NPD (C)	
10	Chi-Square Test	Written Report #6 due	NPD (D) or Air Bags	
11	Simple Linear Regression	Written Report #7 due	Mutual Fund Flows	
12	Review	Written Report #8 due		

Added information

- Students work in pairs
- Students are required to use technology each week
- Students are given opportunity to rewrite reports
- Students are expected to follow guidelines for figures, tables, graphs, and exhibits
- Written assignments often accompanied by weekly oral presentations (each team presents once)

How to avoid assessment overload¹

- Give team assignments
- Design assignments carefully
- Distribute examples of prior work
- Include assessment criteria
- Use peer feedback for revisions
- Use grading standards
- Resist over marking and editing
- Focus comments on main points

¹From White, E. M. (1995) <u>Assigning, Responding, Evaluating</u>.

Case Study: Using Garfield Framework

What: Students' ability to apply the concepts of confidence intervals and variability to real data and ability to interpret and discuss results accurately.

Purpose: To determine if students are able to use the concept of confidence intervals to compare and contrast volatile financial data.

Method: A student lab/case, where a prior sample report is made available on the web

Who: Students work in teams of two and instructor evaluates the written report

Feedback: Instructor returns the report the following week with an overall grade and specific comments re: quality of writing (organization, grammar, spelling, etc.) and content (type of graphics used/omitted; treatment of data; conclusions, etc.)

Case w/ Sample Student Work

- Risk and Return in World Markets
- Motor Vehicle Fatalities